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EXISTENCE OF SOLUTIONS TO THE ELASTOHYDRODYNAMICAL
EQUATIONS FOR MAGNETIC RECORDING SYSTEMS*
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Abstract. The existence of steady-state solutions to the system of nonlinear partial differen-
tial equations which are used to model the elastohydrodynamics of magnetic recording systems is
demonstrated.
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1. Introduction. The purpose of this paper is to demonstrate the existence of
steady-state solutions under appropriate conditions to the system of nonlinear partial
differential equations which are used to model the elastohydrodynamics of magnetic
recording systems. There are two components to these mechanical systems: a medium
such as a disk pressure which develops in the air bearing between the medium and
the recording head causes a deflection in the medium and since the deflection of the
medium influences the pressure in the air bearing.

For simplicity, we shall restrict our attention to disk systems. Let Q C R2 be the
annular region of the disk

Q={z=(z1,22) | R<r<1}

where r = /2% + 2% and let ' C Q be the region where the head is in close proximity
to the disk. Thus, we have scaled the spatial variables by the outer radius of the
disk. The mathematical model that we use for the transverse displacement of the
disk, u = u(z, t), is given by [8], [13]

o 2\ Epty ., o, 9
(11) p(?ﬁ +w%) u—V'(TV“)‘_lz(l_,,z)A U—W(a +w%)u+p-pa,

z = (z1,22) € Q, —00 < t < 00,
where £ is time, 6 is the angular coordinate in polar coordinates, p is area density, w is
the angular speed of rotation of the disk, T is tension, E, > 0 is Young’s modulus, t,
is the disk thickness, v is Poisson’s ratio, v > 0 is the air damp coefficient, p = p(z,t)
is the pressure developed in the air bearing, and p, is the ambient pressure.
It is reported in [13] that “earlier work has shown that by bonding tensioned flex-
ible recording media to rigid support disks it is possible to have performance features
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similar to rigid disks, while retaining the advantages of flexible-media technology.”
For tensioned flexible recording media, the imposed tension is a scalar constant and
the centrifugal tension is insignificant [13]. Thus, we shall take the total tension, T,
to be a scalar constant. Since tensioned flexible recording media are bonded to rigid
support disks at the inner and outer edge of the media (the support disk rotates with
the medium), the appropriate boundary conditions are that the disk is clamped at the
edges,

(1.2) u=0, r=R,1,
and

ou Ou
(13) ‘57—1—5;——0, 'I'—R,l,

where n is the exterior normal to 2. More details about tensioned flexible recording
media and their advantages with respect to rigid (hard) disks and floppy disks are
reported in [11].

The pressure, p = p(z,t), is obtained from the compressible Reynolds lubrication
equation [3]-[5], [8], [13]

12“@ +6uV -V(ph) =V - (h3pVp), =z =(z1,72) €T,
(1.4) ot

P = Pa, z = (z1,z2) € OT,

where p is the dynamic viscosity of the air, h = h(z,t) is the thickness of the fluid
layer between the head and the disk, and V = V(z) = w(—=z2,z1) is the velocity of

the disk. We extend p to @ — T by p = p,. If ¢ = p(z) represents the transverse
coordinate of the head, then

(1.5) h=h(u)=¢—u.

It will be convenient to define the dependent variables as functions of Cartesian coor-
dinates, z = (z1,z2), and as functions of radial coordinates, (r,8), in different parts
of this paper. However, we will denote the pressure, for example, by p = p(z,t) or
by p = p(r,6,t). It will always be clear from the context which representation is
appropriate.

Since h = h(u) = ¢ — u, the system (1.1) and (1.4) is a highly nonlinear, coupled
system of partial differential equations. The physical problem requires that the vari-
ables be constrained by p > 0 and h > 0 (h < 0 would mean that a “head crash” has
occurred). In this paper, we demonstrate the existence of a steady-state solution to
(1.1)—(1.4) provided the parameters satisfy a given inequality. It is not known if there
always exists a steady-state solution to the elastohydrodynamical system (1.1) and
(1.4). Further, it is not known in general when unique asymptotically stable steady-
state solutions exist to the elastohydrodynamical system. We note, though, that it
has been demonstrated in [12] that steady-state solutions to (1.1) are asymptotically
stable.

These questions of existence, uniqueness, and asymptotic stability for realistic
parameter values are of practical interest in the design of magnetic recording sys-
tems. “Steady-state” solutions are often found numerically by integrating the time-
dependent equations, and it can be difficult to determine whether we have converged
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to a steady-state, a slowly varying transient, or a slowly varying periodic solution.
In this paper, we show that steady-state solutions do exist for appropriate material
constants, design parameters, and operating conditions.

In §2, we shall give some estimates for the steady-state of (1.1). In §3, we shall
review the estimates that we have obtained for (1.4) in [5], and we shall give the
analysis for the existence of steady-state solutions for the coupled system (1.1) and
(1.4). Applications to floppy disk systems and tape systems are also given in §§2 and
3.

We suppose the reader familiar with the usual Sobolev spaces H'(2), H*(2), and
HE(9Q), and we refer to [1] for details and notation.

2. The steady-state for the deflection of the rotating disk. In this section,

we shall analyze the following steady-state equation for (1.1) to find u € HZ(Q)NH4(0)
such that

6 u Ou
2
(2.1) 602 =V (TVu) - EA%2y — 55 +p, T €Q,
where
_ _ Bt
(2.2) E= 12(1 — v?)
and p € L2(Q).
Since p = p(r, ) is mean square integrable, we have the Fourier expansion
+o00
(2.3) p(r,0)= > pm(r)eims
m=-—00
where the coefficients are given by
1 27
(2.4) pm(r) = — / p(r,8)e=im® dp.
2w 0
It follows from the orthogonality of e™m? that

+

0 27
2m / |pm (r) |27 dr = / / |p(r, 0)|2r dr df < oo

m——oo

and, hence,

1
/ [pm(r)|2r dr < 0.
R

We also assume the solution u = u(r,0) to be mean square integrable, and we
similarly expand
+o00

u(r,0) = Z um (r)eimé
m=—00
where

1 27
um(r) = ﬁ/(; u(r, 6)e—im8 do.

We again have that

2r 1 +00
/ / lu(r, 0)|2r dr d6 = 21r/ |um (r)|2r dr < oco.
o Jr

m——oo
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Au = 12 _?_ +la_2
“=\Far\Uar) "r2eez) "

so from (2.1) we obtain from matching the coefficient of eim® in both sides that

190 17} m2
—pw2m2y,. = =) ==
pw2m2u,y, T(rar (7‘67_) 'r2) Um

10 (9 2)? .
(2:5) -FE (;5; (rb—r-> - -7:—2) Um — 1YWMUy + Pm,

Now

ou
’um='—aTm=0, 'I‘=R,1.

Let {¢mn(r)}32, be a complete set of eigenfunctions for the eigenproblem

ror \ Or rz )mr T \ror or rz ) mn
(2'6) = Am,n(Pm,n, R <r< 1,

1s]
Pmn = ‘Pa'r:,n =0, r=R,1,

which are normalized by the condition

1
/ |omm|2rdr =1
R

and where
0</\m,1S)\m,ZS"‘S)\m,nS“'-

Thus, Am,n (respectively, ¢m n) are critical values (respectively, critical points) of the

functional
1 10 ( 9y m2 |?
Jm(w_/}% [ ror (Tar)— r2 rdr

subject to the constraints that the real-valued functions, ¢(r), satisfy

1
/ I‘PIZT dr=1,
R

p(R) = ¢(1) =0,

3<p2

or

+ ol +
rz ¢ T

dy _Op, .\
E—(R) = 5;(1) =0.
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It can be shown by classical arguments [6] that for m = 0,+1,+2,---,

(2.7) lim Apn = +00.

n—oo

We also note that A\p, n depends on R, i.e., Amn = Am,n(R) and that we can obtain
from the representation of Ap n as critical values of Jp,(¢) that Ama(R) = Am,n(0)
for 0 < R<1. Now

/1 19 ([ 9y m2
rlror \ Or r2
- [[lR2 (2

R ||TOr or

and since ¢ satisfies the above boundary conditions it follows from integration by parts
that

2
rdr

2
m4 2m2 9 [ Oy
o2z - 2 (22
+ r4 lel r3 or (Tar) ¢] rdr
Im2 9 [ 8¢
g T3 Or ("ar)‘"d’"

= —m?2 Rl g—f% (%) rdr

4

1
1o
— —2 -2
m/Rr or
1
dp
— 2 -2
m/Rr or

2 ! dp
2 -3-F ord
rdr +2m /I;r e prdr

2 1
rdr + 2m2/ r=4|p|2r dr.
R

All the calculations in this paragraph can be used to show that

1 ap 2 m2
= —_— —_— 2
JIm () /R [ B lp|2| rdr
(2.8)
E f]|l108 o 2 mt—d4m? 2m? |9y |?
= = L P LU bk
+ T/R [1'31' ("ar ) + ré lol? + r2 |Or rdr

for ¢ satisfying the imposed boundary conditions.
Classical arguments [6] can also be used to show that

1
A ‘Pm,n("')‘Pm,p(’l’)’l’ dr = bnp.



6 MICHEL CHIPOT AND MITCHELL LUSKIN
Further, if
1
/ |v[2r dr < oo,
R

then the expansion

+00
u(r) = Z Um,nPm,n(T)

n=1

where .
vm,n=/ v(r)omqn(r)rdr
R

has the properties that

1 +o0
[ oferdr =3 fomal?
R n=1

and
1 N 2 +oo
/ v(r) - Z Um,n®Pmn(r)| Tdr = Z [vm,a|?2 — 0
R n=1 n=N+1

as N — oo. Finally, since

E [!(m*—4m?
In(o)2 2 [ I g ar
R T
and since
1 m2
In(e)2 [ rleprn,
R T

we have that
(2.9) Amn 2 Am,1 2 max (% (m4 — 4m?) ,m2) .

These properties of the eigenfunctions @m »(r) can be used to construct the ex-
pansion

[o o] o0
(2.10) p(r,0) = Z me,n‘Pm,n(T)eime
m=-oon=1
where
1 2n 1 .
Pman = 2_/ / p("'i 0) e_'mo‘Pm,n("')"' dr.
T Jo R
Note that

2 pl +oo0 +oo
/ / |p|2r dr dO = 27 E E [Pm,n|? < o0.
o JR

m=-—oon=1
We will now show that there exist unique coeflicients, tm n, such that

+00 o0

(2.11) um8) = > S tmnpma(r)em

m=-o00 n=1
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is a mean-square integrable solution to (2.1). If we formally substitute the ex-
pansions (2.10) and (2.11) into (2.1) we obtain the result that

—szm2um,n = _T/\m,num,n — IYWMUm,n + Pmn
or

Ummn = [TAm,n — pw?m?2 + iywm] = 1pm n.

So,

[um,n|? = [(TAmn — pw?m?)? + v2w2m?2]=1|pm n|2.
We note that by (2.9)

(T2)3, ifm=0,

»r o
(TAmn — pw?m?)? + 12w2m? > { ifm#0, T < 2pw?,
2p

L% ifm£0, T> 202
Thus,
(2.12) [um,nl? < C1lpm,al?
where

- . ¥2T T
C7! = min (Tz)\%,l, 2 -2—) .

We have thus shown that if p(r,0) is mean-square integrable, then the formal
solution to (2.1)

+00  +o00

u(r,&) = Z Z Um,n‘Pm,n("')eime,

m=-00 n=1

is unique and by (2.12) satisfies the estimate

2 gl 2 gl
(2.13) / / |u(r, 8)|2r drdf < Cl/ / |p(r, 0)|2r dr d6.
o Jr o Jr

Since ¢m,n satisfies the boundary conditions in (2.6), it follows that u(r, #) satisfies
(formally) the boundary conditions of (2.1).

Now it follows from (2.6) that eim@y,, ,(r) are the eigenfunctions of
E . .
[—A + T A2} €M o (1) = Amn€™0Qm n(r),
(2.14) &M n(R) = €m0 pmn(1) =0,

g . . 0. .
— [eim0 R) = —[etm0 —
ar (™8 pm,n](R) ar [em0pm,x](1) = 0.
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Thus, since by integration by parts

2r 1
/ /R [TV(eimPpmn) - V(ei®¥pqp) + EA(ei™ pm n) A9 0q,p)]r dr dO
0
2 1
= [ [ (T8 + BAR)emspm ety dr o
0 R

2r 1
=TAmmn / / (€% Pm 5 ) (€90 g p)r dr dO
0 R

= 21T Am n6m,q0n p,

we also have the bound

+00 400

27 1
/ / [T|Vuf2 + BlAurdrds = 20T 3" S Amnltmal?
0 R

m=-oon=1

+00 400

(2.15) =27 Y ) Amin |pm.n|?

+00  +oo

2r 1
<20y Y. Y lpmalt=Ca [ [ lptr)erdras
0 R

m=—ocon=1

where by (2.7) and (2.9)

C2 = max TAm,n < 00
2= (TAm,n — pwm?)? + y2w2m?2 )

Since

2 pl
/(; /}; (=TA + EA2)(eimbp,y, ) - (—TA + EA2)(eit0pqp)r dr df

2r 1
= /0 /R (T Am,n€™8 Q5 ) (T Ag,pei®®pq,p)r dr db

= 27rT2)\m,nAq,p6m,q6"7P’
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we have the stronger bound

2 el +o00  +oo
/ / | = TAu + EA2u|?r dr df = 27T2 Z Z/\mn|umn|
0 R m=-—o00o n=1
+o00 400
_ (TAm,n)? 9
27r m_z—oo; (TAm,n — pw?m?2)? + y2w2m?2 [Pl
(2.16)
+00 o0

<21Cs Y Y |pmal?

m=—oon=1

27 1
_ s / / Ip(r, 6)|2r dr d
0 R

where by (2.7) and (2.9)

(TAm,n)?
TAmn — pw?m?2)? + 72w2m2] <o

C3 = max[(

The inequalities (2.13), (2.15), and (2.16) can be used to show that if p(r,8) is
mean-square integrable, then the solution u(r,8) to (2.1) that we have constructed
has the property that all of its partial derivatives of order less than or equal to four
are mean-square integrable [1]. Further, this implies that all of the partial derivatives
of u(r,0) of order less than or equal to two are continuous and that the boundary
conditions are satisfied in the classical sense [1].

We review the above results by the following theorem.

THEOREM 2.1. We suppose that E, > 0, T >0, v > 0, and p € L2(2). Then
there exists a unique solution u € H(Q)NH4(Q) to (2.1). Further, there exist positive
constants C1, C2, and C3 such that

(2.17) / u2dr < Cy / p?dz,
Q Q
(2.18) / [T|Vul? + E|Auf?] dz < Cs / p? da,
Q Q
(2.19) / | - TAu + EA%u2ds < Cs / P2 da.
Q Q

The constants C1, Ca, and C3 can be chosen independent of R. Also, the constant C1,
can be chosen independent of w.

A more detailed analysis of Ay n and the constant C2 can be used to demonstrate
that C2 is independent of w for pw? < T. However, we prefer to give the following
elementary proof.

PROPOSITION 2.2. Assume that

(2.20) pw? < T.
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If p € L2(R2), then there exists a unique solution to

ou

0%y
2 — 27 - =
EA%y — TAu + pw 802+’Yw80 P

in §,
(2.21)

u € HE().
Moreover, there exists a constant Cy = C4(E), independent of w, such that
(2.22) [ulm2(0) < CalplLz().

Proof. This is a straightforward application of the Lax—Milgram theorem. Indeed,
consider the weak formulation of (2.21), i.e., set

ou 6w 8u
Vu- -V 2___ —_—

Then clearly a(u,w) is a bilinear, continuous form on HZ(f2). Moreover,
Ou w
a(u,u) = EAu Au+TVu-Vu — pw? + Y=—=—u?dz

6
(2.23)

/EAu Au+ TV - Vi — pw? (g;) dz.

(We used the fact that since Q C R2, HZ(Q) C C(Q) and u(r, 0) = u(r,0 +27).) Now,
recall that

50~ 0z, 00 T 915 00

= —rsm0—(2—-— +rcosi9-6—u-

Oz Oz2
Hence, by the Cauchy-Schwarz inequality,

Recalling (2.23) we obtain
a(u,u) = / EAu-Au+ (T — pw?)|Vu|2dz
Q

> E/Q(Au)2 dx.
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Since F is assumed to be positive, and since

/Q(Au)2 dz

defined on HZ(2) is a norm equivalent to the usual one, a(u,w) is a bilinear, contin-
uous, coercive form on HZ(f2). Now, for p € L2(f) it is clear that

wv—>/pwdx
Q

is a continuous linear form on HZ(Q), so, by the Lax-Milgram theorem there is a
unique u in HZ(Q) satisfying

a(u,w) = / pwdz Vw € HZ(Q).
Q

Moreover, taking w = u in the above equality, we can easily see that (2.22) holds.

It is easy to see that u satisfies (2.21) in the distributional sense. So, we have

A%y € L2(Q)
since all the other functions appearing in (2.21) are in L2(Q2). Hence, by well-known
results © € H4(Q). In particular we recover the fact that the condition
U= % =0 on 0N}

holds in the usual sense (see [1], [7] for details). O

We could have assumed p in the dual of HZ(f2) and the existence of a weak
solution to (2.21) would still have held true.

We note that (2.20) is the condition that (2.21) be elliptic when E = 0. In the
case that v = 0, existence and uniqueness can fail when pw2 > T. If v = 0, then

(T/\m,n - szmz)um,n = Pm,n-

Hence, if TAm,n = pw?m? for some m, n, then there exist pressures, p, such that (2.21)
does not have a solution. One example is clearly

p(r,0) = €m0 pm n(r).

Also, in this case (T'Am,n = pw?m? for some m,n) solutions to (2.21) are not unique
since if u(r, 8) is a solution to (2.21), then

u(r, ) + eim8pm n(r)
is also a solution to (2.21). However, Theorem 2.1 guarantees existence and uniqueness
when v > 0 for all w.

We note that for the floppy disk, the outer edge is not bonded to a rigid support
disk. In this case, the tension depends on r. Furthermore, the radial tension coefficient
vanishes at the outer edge [2]. Although clamped plate boundary conditions are
appropriate at the inner edge, the plate is free at the outer edge [2]. The head in a
floppy disk system does not fly above the medium on an air bearing. In this case,
p in (1.1) represents the load on the disk from contact with the head. The analysis
given for Proposition 2.2 applies to the floppy disk system if F is sufficiently large.

In this case it is no longer true that pw? < T everywhere in 2. However, for E/pw?
sufficiently large, we can use the inequality

3u)2 E/
2 — der < — Au)2d
pw/Q(éN9 o<y [(@upas

for u € H2(Q) and u = g—% = 0 on the inner edge of the disk.
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3. The coupled problem. The steady-state solution of (1.1), (1.4) is

02u ou .
(3.1) EA2u —TAu+ pwzbﬁ + TWag =P~ Pas in Q,
u € H}(Q),
(3.2) V - (h(u)pVp) = 64V - V(ph(u)),  inl,

p=ps ondr,

where V = w(-z3,21), Q={z=(x1,2z2) | R<r<1}.
We shall restrict p so that p > 0 and set v = p2. The problem then becomes to
find (u,v) such that

2
(3.3) EA2%2y -~ TAu+ pwz%; + 'ng% = /v — /v,, in Q,
u € H(),
(3.4) V. (h(v)3Vv) = wW -V(v/v h(u)), inT,

V=14, onJdl,

where we have set v, = p2, W = 12u(—x2,1).
We are going to solve (3.4) in a weak sense. Noting that V- W = 0 we see that
if v satisfies (3.4)—say in a classical sense—we have

/h(u)3Vv -Védz — / wVvh(u)W - VEdz =0 V¢ e HY(Q),
(3.5) o o

v =1, on of.
From the Sobolev embedding theorem (1], [7] we have that
H}(Q)cC)
with continuous inclusion. So, for some positive constant Cs we have that
lwlre(@) < Cslwlnz),  w€ HF(D).

Let us now collect our assumptions. We assume that the function ¢ (see (1.5))
satisfies

@ is a Lipschitz continuous function on T,
(3.6)
0O<m<yp(zx) <M ae forzerl,

where m and M are two positive constants.
Assume also that

(3.7 I' C Q is a domain of R2 with Lipschitz boundary;
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let |T'| denote the Lebesgue measure of T' and let d denote the smallest width of a
strip containing I'. Then we can prove the following theorem.

THEOREM 3.1. Let m' be any positive number such that
0<m <m.

There exists a solution (u,v) of (3.3), (3.4) if (3.6) and (3.7) hold and if

(38) (A sp, ot
where
_ [12dwp(M 4;;3) m/)]2|r|1/2’ b= a|[|1/2p3.
Proof. Set
(3.9) Kyp={vel))|v>0ae onT, |v—va|2r) <&}

where % is a positive real number that we will choose later on. It is clear that K5 is
a closed convex set of L2(T).

For v € K we have

(3.10) Vo — \fog € L2(R)

(v is, of course, supposed to be extended by v, outside of I'). Indeed, this is an easy
consequence of the inequality

(3.11) Vv = v/va| <

So, by Theorem 2.1 and Proposition 2.2 there exists a unique solution u of

EA?u — TAu + pw? — Ou 5 + = /v — /7, in Q,
(3.12) 962

u € H§(Q),

and there is a constant Cy4 = C4(FE) such that

Csy
(3.13) [ulmz(e) £ —=Iv — va|L2(r)

Vva

(we use here the fact that, by (3.11), we have |/v — \/Ta|r2(r) < |v — Va|L2(r)//Ta)-
The constant C4 is independent of w for pw? < T. Let m' be any positive number
such that

0<m <m.

Let us show first that we can select % in such a way that

(3.14) h(u)=¢p—u>m' > 0.
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Recall from the Sobolev embedding theorem given above that

[ulpe(0) < Csluluz()

< B —ulpe by (313)

Now, by (3.6), (3.14) will hold if
So (3.14) will hold if

CyCsF# <m—m
Ve
or, equivalently,
’
(3.16) # < yrim=m),

C4Cs

Assume that # has been chosen such that (3.16) holds. Then since h(u) is strictly
positive there exists a unique function 7 (v) > 0 which is a solution of

/ hMu)PVT (v) - VEdz — w / T W - Vedz = VE € HA(Q),
(3.17)

T (v) =ve, onT

(we refer to [5] for a proof of this result).

If we can prove that 7 (v) has a fixed point we will be done. First, let us prove
that for a suitable choice of #, T maps K into itself. Indeed, we already know that
T (v) > 0. Next, if we take £ =7 (v) — vq in (3.17) we get

(m)3|V(T (v) = va)l3a(ry < fr h3(u)|V(T (v) — va)|? dz
=w | Mu)y/T (vV)W - V(T (v) — v,) dz.
[ BT W 9T (0) - ve)
Using the Cauchy-Schwarz inequality and recalling (3.6), (3.14) we deduce

1/2
(m)3IV(T (v) = va)Zary < 120p(M +m —m!)| V(T () = v)l 22y ( [7w dx)

(note that supp [W| < 12u). Hence, we have that

1/2
(m")3|V(T (v) — va)|L2(r) < 12wp(M +m —m/) (/ry(v) da:)
(3.18)

1/2
< 12wp(M +m —m') {/ | T (v) — va| dz + |I‘|va} .
r
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By the Poincaré inequality,
(M')3T (v) = val2(r) < d(m')3| V(T (v) — va)lL2(r)

(3.19) < 12dwp(M + m — m/){|T|Y/2\.T (v) — va|L2(r) + IT|va}/?
where d denotes the smallest width of a strip containing I". So, we get
with

_ [12dwp(M + m — m!)]?|T|1/2 _ [12dwp(M +m — m/)]2|T"|va

(3'20) (mt)s ’ (ml)6

and 9~ maps K into itself provided that

(3.21) (i—— “2’2“”“’) <.
Assume that (see (3.16))
(3.22) (“ Vel + b ) Vi (mc4c?l)

then we can select & such that (3.16) and (3.21) hold. Thus forv € Kg, 7 (v) € Kg.
Now, from (3.18) it is clear that J (Kg) is relatively compact in K (since H1() is
compactly embedded in L2(f2), see [7]). So, provided we prove that 7 is continuous
on K4, by the Schauder fixed point theorem (see [7]) we can conclude the existence
of (u,v) satisfying (3.3), (3.5).

To prove the continuity of 7 we proceed as follows: let v, € K4 be such that
vp, — v in L2(T). Let us denote by uy the solution of (3.3) corresponding to v = vq,
and by u the one corresponding to v. From Theorem 2.1 and Proposition 2.2 we derive
easily

lun — ulg2(0) < Cl(Von ~ V¥a) = (Vv = V¥a) |12 (r)

< ClVn — Vola(r) < C|/|vn — v”La(p)

1/2
=0 ([Ion-slds) " <O, = ol
r

(We used the Cauchy-Schwarz inequality.) Hence un, — u in H3(Q2) and also uniformly
on Q. (Recall that HZ(Q) C C () continuously.)

Now, from (3.19) we deduce that for some constant C independent of n we have

|7 (vn)|E1(ry < C.
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So we can extract a subsequence ny from n such that
(3.23) I (Vn,) = w in HY(T), T (vn,) = w in L2(T).
If we let k go to +o0 in the equality

/ 13(un, )V.T (vny) - VE = wr)T (vmg )h(um )W - VEdm =0 VE € HI(Q),
r

we obtain (recall that h3(un,) — h3(u) uniformly)

/ h3(u)Vw - VE — wy/wh(u)W - Védz =0 VE € HA(Q),
(3.24) r

W= Vq on OI'.

By uniqueness of the solution of such a problem we have w = 7 (v) (see (3.17)).
It results from (3.23) that the whole sequence 7 (v,) converges toward 7 (v). This
proves that 7 (vy) converges toward 7 (v). Hence, .7 is continuous on Kg and this
completes the proof of the theorem.

COROLLARY 3.1. Ifw or|T| are small enough or m is large enough with M/m
fized and (3.6) and (3.7) hold, then there ezists a solution (u,v) of (3.3), (3.4).

Proof. Clearly, (3.8) holds for w or |T'| small enough, all other quantities being
kept fixed. Also, (3.8) holds if we set m’ = m/2 and m is large enough with M/m
fixed. O

It should be possible to apply the techniques of this paper to prove results similar
to Theorem 3.1 for tape systems. Tape systems are usually modeled by a simplified
shell model for the displacement of the tape and the compressible Reynolds lubrication
equation for the air bearing [9].
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A QUASI-VARIATIONAL INEQUALITY ARISING IN
ELASTOHYDRODYNAMICS*
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Abstract. In this paper, a quasi-variational inequality arising in elastohydrodynamic lubrication
is studied. In the two-dimensional case modeling a thin fluid film between an elastic ball and a plane,
the existence of a smooth solution is proved provided that the viscosity is assumed to be constant. In
this case, estimates for the support of the solution are also established and uniqueness of the solution
is also proved under some restrictions. In the case where the viscosity is not constant, the existence,
regularity, and uniqueness are proved under additional restrictions. Finally, for the one-dimensional
problem describing a thin fluid between a rolling cylinder and a plane, the fact that the free boundary
consists of at most one point is established in addition to existence and uniqueness.

Key words. variational inequality, free boundary problem, a priori estimates, fixed point
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1. The model. The lubrication of a ball rolling in the positive = direction gives
rise to a variational inequality:

W _o (dPow\ _o (pRon), o (i
' Oz \ 12u 0z Oy \12pu0y ) — Oz \ 2
(1.2) @>0
s o [ ph3 ou o [ ph3 i d (pvh\| _
a3 “[‘55(15,;5;) az(maz talz )| ="

where @ is the pressure, v is the average surface speed (v > 0), p is the density of the
liquid which shall be assumed to be constant, 4 = u(i) is the viscosity coefficient of
the liquid, and A is the film thickness which takes the form:

z2+9y? 2 (s, t)dsdt

(14) h@y) =k + —p—+ V(e =382+ (y—t)?

where E’ is the effective modulus, and k is a positive constant.

The variational inequality (1.1)-(1.3) (with h a given function) occurs in a
simplified model of a lubrication problem (see [2]); the dependence of h on the
pressure, as in (1.4), assumes that the ball is elastic; this is the case when the load
is large. The system (1.1)—(1.4) forms an elastohydrodynamics lubrication model;
for more details see [3], [6]. In this paper, we study the quasi-variational inequality
(1.1)-(1.4) in a bounded, but large domain Q. Since % is small on 9, it seems natural
to impose the boundary condition

(1.5) 4=0 on 99.
If p is constant, then setting the new variables

4R

7 ~ 3
(1.6) h=2Rh, u=—ri, k=2RE, A= 12u0(2R)

nE'

* Received by the editors August 15, 1988; accepted for publication (in revised form) March 21,
1989.

t School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
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we can rewrite (1.1)-(1.5) in the form

(1.7) -V (h3Vu) > ~/\% for (z,y) e

(1.8) u>0 for (z,y) €

(1.9) u- [—V(h3Vu) + /\g%] =0 for (z,y) €N
(1.10) u=0 for (z,y) € N

and

(1.11) h(z,y) = k + 22 + 9% + ul(s, t)dsdt

2 V(z-8)2+(y—-1)?

In §3 we prove the existence of a C1! solution by using the fixed point theorem;
the proof uses some estimates derived in §2. In §4 we take 2 to be a disc with large
radius M and obtain some estimates for the support of the solution, i.e., we prove
that for some small € > 0,

(1.12) u(z,y) >0 for — M <z < —eM.

In §5 we prove the uniqueness of the solution provided A is small. In §6 we study the
problem (1.7)—(1.11) in the case where

(1.13) B = poe*®, to >0, a>0;

this case is of particular physical interest (see [1], [6]). In [7], by a penalty formulation
of the quasi-variational inequality, the existence of Hj () solution has been proved
provided « is small. On the other hand, we are going to prove the existence of a C'!+!
solution provided « is small (the case @ = 0 is treated in §3).

In §7 we consider a rolling cylinder instead of a rolling ball; the lubrication problem
then reduces to a one-dimensional quasi-variational inequality:

(1.14) - (53%), > —6vh' for z € [-M, M]

(1.15) >0 for z € [-M,M)]

(1.16) i - [— (ﬁ"‘%)’ + evi/] =0 for z€[-M,M)]
(1.17) a(£M) =0

and

(1.18) h=k+ % + ;% /_I: i(s) log lmz—l_\'lslds.

Setting analogously to (1.6)

opi . _8R_ . 24ppv(2R)®
(1.19) h=2Rh, u= 7rE,u, k=2Rk, A= T ,
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the problem, with p given as in (1.13), reduces to

’ !
(1.20) - (h3:W) > -\ for z € [-M,M]
(1.21) u>0 for z€[-M,M]
’ !

(1.22) u- [-— (hagﬁ) +)\h'] =0 for z €[-M,M]
(1.23) uw(xM) =0
and

M
(1.24) h =k + z? +/ u(s) log ﬂds.

-M |z — s

Assuming « to be small, we prove the existence of a C*! solution. It is also proved
that the solution is unique and that the free boundary consists of at most one point
provided A is small.

Numerical work for this case can be found in [1]. In [7], numerical work has been
done based on a penalty formulation of the variational inequality.

2. A priori estimates. Later on we shall need some estimates for the solution
of the quasi-variational inequality

(2.1) -V (h3Vu) > ~,\Ng-g for (x,y) € Q
(2.2) u>0 for (z,y) €
(2.3) u- [—V(hSVu) + /\Ng—:] =0 for (z,y) €N
(2.4) u=0 for (z,y) € N
and
t)dsdt
2.5 h=k+ Nz +4° +N/ us,
(2.5) (=" +vy°) Y P

where A, k, N are positive constants, A < A, and Q is a smooth domain in R2.

Remark. Later on we shall take N to be different constants in the proof of the
existence and the estimation of the support of the solution.

LEMMA 2.1. Assume that (u,h) is a solution of (2.1)~(2.5) with u € Wy (),
h € WbH2(Q). Then

2
(2.6) / h3|Vu|?dxdy < i\%N?
Q
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Proof. Integrating (2.3) over , we get

—)\N/

ou

1/2 1/2
2
AN ( /(; h s dxdy) ( /Q dwdy)

ANIQIL/2 1/2
< ,Jl—/L ( /Q h3|Vu|2dxdy)

Il

/ h3|Vu|®dzdy
Q

(2.7)

IA

and hence (2.6) follows. 0
Extend u by zero outside Q. Then u € W0 2(R?) and, by a change of variables,

(2.8) h(z,y) = k+ N?(z® + ) + N/ (z — s,y — s)dsdt.

1
N —— )
R2 V82 +t2
Thus

(2.9) Vh(z,y) = (2N2z,2N? Vu(z — s,y — t)dsdt.

)+N/ __1_
v Rz V82 +12

LEMMA 2.2. Under the assumption of Lemma 2.1, we have
(2.10) I VhllLs () < CN?

where 2 < p < 00, and C is a constant depending on Q , p, and A.

Proof. Applying Young’s inequality (see, for example, [5, Lemma 7.12]) to (2.9),
we get

(2.11) IV hllzr(@y < CQN? + C(Q, PN Vull 2.
Since, by (2.6),
(2.12) K / |Vu|?dzdy < A II:”N?
and therefore,
A0 L\Y? A2
(2.13) IVullza ) < (7‘:"1\’2) = Ay
Substituting this into (2.11), (2.10) follows. 0
Setting

3Vh AN Oh
(2.14) f = TVU - _}_Ls_é_.’l—?,
we can rewrite (2.1)-(2.4) as
(2.15) —Au>f for (z,y) €N
(2.16) u>0 for (z,y) €N
(2.17) u(—Au—f)=0 for (z,y) €

(2.18) u=0 for (z,y) € oN.
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LEMMA 2.3. Under the assumption of Lemma 2.1, we have, for any 2 < p < oo,

(2.19) ”ullwz,p(g) < C(Q,N,p)/\
(2.20) ”’U,llwz,oo(gr) < C(Q,Q’,N)/\
(2.21) Ihllwie@ < C(@N)

(2.22) Ihllwer@y < CQ,Q,N)

where Q' CC Q, and the constants in (2.19)—(2.22) depend on k and A.

Proof. We shall use C to denote various constants depending on 2 and N and
use Cp, to denote various constants depending on 2, N, and p.

First let 1 < p < 2. Then by (2.14)

(2.23) |fIP < C|VAP(|Vul? + AP).
Applying Hoélder’s inequality we get

(2-p)/2 p/2
(2.24) / |f|Pdzdy < C ( / |Vh|2”/(2"’)dxdy) ( / (|Vu® + ,\2)dxdy)
Q Q Q

since 1 < p < 2,2 < 2p/(2—p) < 00, and by Lemmas 2.1 and 2.2 it then follows that
(2.25) Iflsey S oA (1<p<2).

Thus, by LP estimates for the variational inequality (2.15)-(2.18) give

(2.26) lullwes@y SCpA (1<p<2).

Using the Sobolev Embedding Theorem we conclude that

(2.27) lullwr@) < CpA

for any 1 < p < oc.
Now from (2.9) and Holder’s inequality it follows that

Bg

2/3
(2.28)  [|VA|lL=(e) £ C +C||VullLs(q) ( / (s +13)% 4d8dt)
)

if K is large enough so that  C Bik/2(0). Using (2.27) it follows that

(2.29) IVA|| Lo @) < C.
Next, using (2.14), (2.27), and (2.29), we find that
(2.30) Ifllze(2) < CpA

for any 1 < p < 00, and thus by a similar argument as above we obtain the estimate
(2.31) lullw2r@) < Cpr

for any 1 < p < oc.
To get higher regularity, we differentiate (2.9) using a similar argument as in [5,
p. 53-55], and obtain:
Uy (8, t)dsdl _ uz(8, 1) cos(7, x)
z—3)? +(y —t) o0 V/(z —8)2 + (y — 1)?

(2.32) hyy = 2N2+ N / 7
Q
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Similar expressions can be derived for hyy and hy,.
By the Sobolev Embedding Theorem and (2.31), it follows that

(2.33) lullw:. gy < CA

and thus if (z,y) € ', where Q' CC Q, then

ug (8, t) cos(f, x) sl < o
oo /w—s2+—1?7 |~

Next, applying Young’s inequality [5, Lemma 7.12], and using (2.31), (2.34), we con-
clude that

(2.34)

(2.35) lRllw2.p @y < Cp + Cpllullw22(@) < Cp for any 2 < p < oo,

the constants in (2.35) depend on dist(2', ).

By the Sobolev Embedding Theorem, (2.31), and (2.35), for any 0 < a < 1 and
Q" cc o,

(2.36) ”h"cl.a(nu) S C,
and
(2.37) lullor.eay < €A

where C’ depends on a and Q” and C” depends on a. Therefore, using (2.14) it
follows that

(2.38) Ifllcs@ny < C"A

where C""" depends on 3 and Q". Hence, by elliptic estimates for variational inequal-
ities,

(2.39) Huuwz,oo(gm) < CA

where Q" CC Q”,and 0 < a < 1 (see [4]). g

3. The existence of a solution.

THEOREM 3.1. Suppose that Q is a smooth bounded domain, then there exists a
solution (u, h) of (1.7)~(1.11) such that

(3.1) wE€ WP NWEP(Q), heCHNCLIN)

loc

forany2<p<ooandl<a<l.
Proof. Take 2 < p < oo (fixed) and let

(3.2) B = WhP(Q) N W, 2(Q).

For each u € B, define

+
(3.3) Hu=k+a?+1° +/ ut(s,t)dsdt
a(z -7+ {y—1)?
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Then, by Holder’s inequality,

(3.4) |Huller@y < C + Cllullwas)
(3.5) “H’U,l - H’U,2”01(Q) S C”Ul - ’u,guwl,p(g).
Now define T'u to be the solution of (1.7)-(1.10) with h = Hu (it is unique for fixed
h).
From (3.4), LP estimates for the variational inequalities and the compactness of

the inclusion W2?(Q) — WP(Q), it follows that T : B — B is compact.

The compactness of T, the uniqueness of the solution of the variational inequality,
and (3.5) altogether imply that T : B — B is continuous.
Next, for any 0 < o < 1, consider any fixed point u of the operator oT"

(3.6) u=oTu.

Notice that since u/o = Tu, u is a solution to the following problem:

~V(h®Vu) > ——)\ag—z for (z,y) €N

u>0 for (z,y) €Q
u-|=V(h Vu)+/\o'53—: =0 for (z,y) €
u=0 for (z,y) € 0N

and

u(s, t)dsdt
a(e—92+@y-17

(3.7) h(z,y) =k + 2%+ 9% +

Hence by Lemma 2.3 (with N = 1),
(3.8) llullwrr) < C

where C is a constant independent of o.

From this fact and the previous properties of T it follows that the Laray—Schauder
fixed point theorem [5, Thm. 10.3] can be applied. Thus, there is a fixed point u for
T, that is, there exists a solution (u, h) to the problem (1.7)-(1.11).

Finally by Lemma 2.3,

(3.9) ueWEZ(Q), heCyX(9),
and the theorem is proved. 0

Remark. If the domain € is symmetric with respect to the z-axis, then we may
take in (3.2)

(3.10) B =W (Q) N Wy () N {ulu(z,y) = u(z, ~y)}

and the preceding argument shows that there exists a solution symmetric with respect
to y.
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4. Estimate on the support. As a simple result of (2.33), we have the following
theorem for fixed (2.

THEOREM 4.1. For any € > 0, there exists A > 0 such that if 0 < A < A, then

(4.1) u(z,y) >0 for z < —e, (z,y) €.

Proof. From (2.9) (with N=1) it follows that

hy = 2z4 uz(s, t)dsdt

(4.2) aV(z—38)2+ (y—1t)?

= 2z + I
By (2.33)

I < Ca / dsdt

(4.3) V(i —3)2+ (y—t)?

<
hence, for z < —e,
(4.4) hy < =2e+CA<0 for z < —¢, X< A,
provided )\, is small enough, and hence u(z,y) > 0 for z < —e. 0

If A is not small, a similar result still holds if the domain is “large” enough, i.e.,
Q = Bp(0) in (1.7)—(1.11), where M is large. We shall prove the following theorem.
THEOREM 4.2. For any € > 0, there exists a K > 0 such that if M > K, then

(4.5) u(z,y) >0 for — M <z<—eM, (z,y) € By(0).

To prove this theorem, we start with a scaling;:

(4.6) up(z,y) = w(Mz,My) for z2+¢y2<1
(4.7) hy(z,y) = h(Mz,My) for 2 +y*><1.

A simple calculation shows

Oh

(4.8) — V(B3 Vur) > -,\M—axﬁ‘- for (z,y) € By
and
(4.9) hv(z,y) =k + M2(:1:2 + y2) +M u(s, t)dsdt

B V(&= +(@y— )2

This shows that (ups, hpr) satisfies (2.1)-(2.5) with Q = B1(0).
It clearly suffices to show that

(4.10) upm(z,y) >0 for —1<z<—¢

for M large enough; for simplicity, we drop the subscripts M from upys and hps.
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Since h > €2M? if 2% + y? > €2, we get from (2.6),

2,
(4.11) / |Vu|?dzdy < 2—6M“4
Bl Be
We shall use C to denote various constants independent of M (although they may
depend on ¢, k, and A ).

We are going to carry out a proof similar to that in Lemma 2.3, but this time we
shall use the fact that A > e2M? if 22 + y? > €2 to find a better estimate on h when
z2 + 4% > (4¢)%.

By Hoélder’s inequality, for 1 < p < 2

1
win | Stvs < 21Vl s VUl -

L’(Bl\Be)
By using (4.11) to estimate Vu and Lemma 2.2 to estimate Vh, we get

th S (CMOM™) < 1 Gy

(4.13)
L?(B1\B. ) 2M ?

By Lemma 2.2, also

AM O8h AM
l = m”v’lllm(m)

(CM~%)(C,M?) < C,M~>.

IA

From (2.14), (4.13), and (4.14), it now follows that

(4.15) IflleenB) SCoM™2  (1<p<2).

Thus we prove the following lemma.
LEMMA 4.3. For f defined in (2.14) (with N = M),

(4.16) Iflle BBy S CoM™? (1<p<2). O

Notice that u satisfies the variational inequality

(4.17) ~Au>f, u>0, u(-Au—-f)=0 in By
(4.18) u=0 on 8B

where f is given by (2.14) (with N = M); by Lemmas 4.3, (4.11), and the Poincaré
inequality,

(4.19) lvllz2(i\8.) < IVVllz2(B\B.) for v € Wy (By),
we get:

(4.20) lullz2(B,\B.) S CM ™2 (1<p<?2)
(4.21) IVullL2(g\B,) < CM™2 (1<p<?2)

(4.22) | fllzeBi\B.) < CpM ™2 1<p<2).
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LEMMA 4.4. For1<p<2

(4.23) llullw2.p(Bi\Bze) < C,,M'2 (1<p<2),
and hence, by the Sobolev Embedding Theorem,

(4.24) lullwis(\Bs) S CoM™2 (1< p<o0).

Proof. Take a cutoff function { € C*° so that
¢ = 1 for2e<22+42<1
= 0 for \/m <e
and 0 < ¢ <1. Let w = (u. Then
(4.25) Aw = uAl +2V({Vu + (Au,

and w satisfies the variational inequality

~Aw>F for e<y/z2+3y2<1
w>0 for e<yz2+y2<1
w(-Aw—-F)=0 for e<yz2+3y%2<1
w=0 for VaZ+y2=¢, VaZ+y?=1
where
(4.26) F = —ulA{ - 2V(Vu—(f.
By (4.20)—(4.22), we get
(4.27) IFlleoi\B) S CoM ™2 (1<p<2).
Thus by LP estimates for the variational inequality,
(4.28) lwllwass\B) SCpM™2  (1<p<2)

and (4.23) follows. 0
Next, we prove the following lemma.
LEMMA 4.5. There exists a constant C such that

(4.29) / u(z,y)dedy < CM~/3
B,

uniformly for large M.
Proof. If (4.29) is not true, then there exists a sequence M,, — oo such that

(4.30) / up, (€, y)dzdy > nM; 3.
B,
Thus
upM, (8,t) 1/ 1 15
4.31 2 dt > - upm, (z,y)dzdy > -nM, ;
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hence
(4.32) hu, > %nM,l,‘(l/s) > %M,‘f/5.

By Lemma 2.1,

3
(4.33) /B (gM;‘/ 5) Vun, |*dzdy < CMg,
1
and thus
(4.34) / |V, [Pdzdy < Cn—3M2~(2/5) = cn=3M;2/5,
B

Using Hoélder’s inequality and (4.19) with € — 0 , we get

/B (@ )dedy < 7Nusg, (s
1

(4.35) w2 Vun, || L2(8,)

<
S Cn—3/2Mn‘1/5.

From (4.30) and (4.35), it follows that

(4.36) nM;Y® < Cn~32 M5
or

(4.37) n< Cn=3/?

which is a contradiction. 0

Proof of Theorem 4.2. From (2.9)

(4.38) he = 2eM? + MI
where
(4.39) I= Ua(3,t) dsdt

B V(& -9+ (y—t)?

Take a cutoff function { € C* such that

(4.40) ¢ = 1 for v/z2+y2>3e
' = 0 for v/z2+y2 <2

and 0 < ¢ < 1. Then

(= O)als,t)

= Ve—orra- "
| _ (4)a(s, 1 (w1 = 0)a(5,9)
(4.41) = 5, \/(:L‘ = 3)2 oy t)2 dsdt + 5, \/(.’L‘ - 8)2 oy t)2

= Ji+ Jo.

sdt
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Assume that (z,y) € By \ Bse. Then

(4.42) VEz—38)2+(@y—t)2>e¢ for (s,t) € Bse.

Since u(1 — ¢) = 0 on dBs, no boundary term will appear when we use integration
by parts for J,. Hence

Jo = (u(l - C))w(s’ t)

= dsdt
) 5o /@= 5P + (4= 0P
) ad 1
= - u(l — — dsdt
/Bh =9 (33 \/(z—s)2+(y—t)2)
and thus
<
(4.49) 2] < C 5. |u|dsdt
< CM7E,

the last inequality is obtained by Lemma 4.5.
By Holder’s inequality

1
N CEREEAEDE

IN

l(uQ)ellL3(Bi\B2) | SUP
(w»y)eBl

C||V(ul)|L3 (B, \Ba.)

1]l (B1)

L3/2(31):|

IA

(4.45)
where the last inequality is obtained by using (4.24).
Thus, by (4.44), (4.45), and (4.21), for (z,y) € B1\Bue

(4.46) 1| < ||+ | 2| < CMTYE,
and thus, for z < —4¢, we have

2z M2 + cM—(1/9)
—8eM? + CM?*® <0

if M > K(e), and hence u(z,y) > 0 for z < —4e. 0

he

(4.47) f

5. Uniqueness. In this section we prove uniqueness provided A is small. The
estimates that we obtained in §§2 and 3 are uniform for A, that is, the constants C
depend only on A. Q will be a fixed smooth domain.

THEOREM 5.1. There exists Ay > 0 such that the solution of (1.7)-(1.11) is
unique if 0 < X < A1, where A1 depends on  and k.

Proof. We shall use C' to denote constants that do not depend on .

If (u, h),(@, h) are two solutions, then we have

(5.1) [~V (R3Vu) + Ahg) (@ — u) > 0
(5.2) [~V (h3Va) 4+ Ahg)(u — @) > 0.
Thus

(5.3) /9 RAVuV(i—u) > A /Q h(i — u)g

(5.4) /Q RBVaVu—a) > A /ﬂ A — @)
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hence
(5.5) / (W3 (= )2 + (B — k3 ViV (i — u)} < A / IV (u = @)[[h = B.
Q Q

Using (2.19) and (2.21), we get

3 =2
656) k /Q IV (u — @)

IA

CA[ |V (u = @)||h - b
Q -
CAIV(u = @)||L2@)llh — hllL2(0)-

IA

By Young’s inequality [5, Lemma 7.12] with p = ¢ = 2, we get
(5.7) Il = hll L2y < Cllu — dil| L2 (a)-

Now (5.6) and (5.7), together with Poincaré’s inequality give:

(5.8) /Q IV(u— @) < CAIV(u = @)l 2@y llh = hllz2() < C/\/Q 1V (u~a)

Thus, if A is small, then

(5.9) /Q |V(u—-@)2=0

which implies that u = 4. O

6. The case pu = poe®*. In the previous sections we studied the case when the
viscosity is constant. We now study the case when the viscosity is given by (1.13).
We shall extend all the previous results to this case provided « is small.

Using the transformation

(6.1) w=1-—e"%,

we obtain from (1.1)-(1.5) the variational inequality:

(6.2) ~V(h3Vw) > —Aah, for (z,y) € Q
(6.3) w>0 for (z,y) €N
(6.4) w[-V(h3Vw) + Aah;] =0 for (z,y) € N
(6.5) w=0 for (z,y) €N
and
1 1 dsdt
6.6) h(z, =k+2+2+/—(1 ) :
(66} hlz,y) CYT Jaa BT (s, 1) Vi(x— )2 + (y —t)?

The main difficulty is to show that 1 — w stays uniformly positive. To overcome this
difficulty, let us fix € € (0,1) and take a cutoff function ¢ such that { € C*°,0< (<1
and

((w) 1 for w<1l—e

= 0 for w>1-—¢/2
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Define

(6.7) G(w) = {(w) log 1 _1 for 0 < w < o0

then G € C*°. Let us take, for instance, € = % Next, instead of (6.6), take

1 dsdt
6.8 h(z,y) = k+ 2% + 2+/—G'ws,t .
68) k) 7, GO t) s
Let us consider the system (6.2)-(6.5) and (6.8). From (6.2)-(6.5), it follows that

2.2
(6.9) / (Vuwl2dzdy < 22 Aol el Uy
Differentiating (6.8), we get
Vuw(s,t) dsdt

(6.10) Vh=2(z,y) + AGI(M(S,t)) \/zw —8)2+ (y— t)2'

Note that |G'(w(s,t))| is bounded uniformly, and thus, by Young’s inequality [5,
Lemma 7.12], we get, for 2 < p < o0,

(6.11) IVAlLo@) < C + C||§Vw|lm(n);
by (6.9)

(6.12) IVh|Lr() £ C

where the constant C is independent of . Thus, if

(6.13) f=ltoy 2200
then, as in the proof of Lemma 2.3 (using (6.9)),

(6.14) Ifllre) < Cpar  (1<p<2).

From (6.9) and (6.14), it follows by using the L? estimates for the variational inequality
that

(6.15) lw][w2.r@) < Cpad (1<p<?2)
Applying the Sobolev Embedding Theorem to (6.15), we obtain

(6.16) wSCa/\Sl—e=%

provided a is small, and then the expressions (6.8) and (6.6) coincide. The existence,
regularity, and uniqueness of the solution now follows as before. Let us summarize
the results as follows.

THEOREM 6.1. There ezists a constant ¢ = c(k,Q) > 0 such that if 0 < a) < c,
then there ezists a solution (u, h) such that

(6.17) u € W2P(Q) N W2 (Q), ke CHQ) NCLEQ).

Moreover, there exists a constant Ay = A1(k, Q) > 0 such that if 0 < ad <c¢, 0 <A<
A1, then the solution (u, h) is unique.
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7. The one-dimensional problem. Consider the one-dimensional variational
inequality:

(7.1) - (h3;—;), > —AW  for z € [-M, M|
(7.2) u>0 for z€[-M,M]
(7.3) u- {— (hf’z’%), + )\h’] =0 for z € [-M,M)]
(7.4) w(xM)=0
and
(7.5) h=k+w2+/M u(s) log M ds
-M |z — s

where M, A, and k are positive constants; and « is a positive constant which shall be

assumed to be sufficiently small in proving the existence of the solution; both o and

A will be assumed to be sufficiently small in proving the uniqueness of the solution.
Introducing the transformation

(7.6) w=1-e

b

as before, we obtain

(77) u = a log

and (7.1)-(7.5) is transformed into the following problem:

(7.8) —(h*w') > =Xahk’ for z € [-M, M]
(7.9) w>0 for z€[-M,M]
(7.10) w[—(h3w') + Aah'] =0 for z € [-M, M]
(7.11) w(EM) =0
and
1 M 1 2M

— 2, - - - i

(7.12) h=k+z +a/_M (lOgl—w(s))lOglx—3|ds'

As we did in §6, instead of (7.12), we consider

M
(7.13) h=k+al+ = / (G(w(s))) log l—jﬂg—lds
-M -

where G(w) is defined in (6.7). The system (7.1)—(7.5) is equivalent to (7.8)—(7.11)
and (7.13) if we can establish the bound:

(7.14) w<l—c

but this follows, for small a, from the following lemma.
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LEMMA 7.1. Suppose that A < A. If w satisfies (7.8)—(7.11), then

Aa

(7.15) lw(y)| < 2M— 2

for |ly| < M.

Proof. Integrating (7.10) over [—M, M], we get

M M M
f P> = —/\a/ hw = )\a/ hw'
-M -M -M
M 1/2
(7.16) < ( / h2|w’|2) (2M)'/?
-M
1/2
< k1/2(2M)1/2 (/ halwllz) s
and hence
M 2.2
(7.17) / |2 < 2% (2m).
M k
It follows that
Aa
(7.18) llw'|| 2 (- a0 < (2M)1/2
so that
M
(7.19) w) < [ 0/ (s)lds < M)A 12

Using (7.18), (7.15) follows. a
Lemma 7.1 tells us that if we choose, for instance, ¢ = %, then there exists an
A > 0 (we may take A = (k?/2M)(1 — €) = k?/4M) such that

(7.20) w(y)51—e=-;- for 0< a) < 4,

and hence (7.12) and (7.13) coincide. Next we shall use constants C' to denote various
constants depending only on M, k, A, and A. Since we are going to use the same
method as in §3 to prove existence, care has to be taken so that the constants will
not change when we replace A by oA (0 <o <1).
Note that,
1 2M

(721) S

and, consequently, by (7.15),

1 1 1 1
. ~log ———| <A —log——+—— ]| <CA.
(7:22) ,3‘;‘,’\4 a 81- w(s)| ~ A (a/\ log 1- 2Ma/\/k2) 50
By (7.12),
M M
(7.23) h<C+ C/ log ds<C.
-M IIE - SI
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To derive an estimate for w’(z) for all z, it suffices to derive an estimate for w’(z) for
every interval [a, b] such that w(a) = w(b) = 0 and w(z) > 0 for z € (a,b).

By Rolle’s theorem, there is a number ¢ € (a, b) such that w’(c) = 0. From (7.10),
it follows that

(7.24) B3 (z)w'(x) = da(h(z) — h(c)).
And hence, by (7.23),

hz) — h(c)

| SO

(7.25) %lw'(x)l <A

Differentiating (7.13) (which is now the same as (7.12)), we get

M ’
1 w'(s) 2M
. "(z) =2 — 1
(7.26) K (zx) x+/_Ma1—w(s) Oglx——s|d3’
and, by (7.20), (7.25),
M
(7.27) |W (z)| < 2M + C/ log ds <C.
-M l.’L' - 8]
By (7.10),
(7.28) R3w” + 3h%h'w' = Aah’ if w(zx) >0,

and thus, by (7.25), (7.27),

(7.29) sup —l—lw”(x)l <CA.
lel<M @

Using these estimates, we can prove the existence of the solution by using the same
method as in §3. In the case a = 0, we may work with u instead of w. We have
proved the following theorem.

THEOREM 7.2. If a is sufficiently small such that

2M A
then there ezists a solution to (7.1)-(7.5). 0

Remark. This condition on « is much more precise than that derived in Theorem
6.1.

Next, we prove that the free boundary consists of at most one free boundary
point.

THEOREM 7.3. There exists Ay = Ao(k, M) such that if 0 < aA < A,0< A < A,
then there is at most one free boundary point.

Proof. We can rewrite h’ as:

M~z '
(7.31) K (x) =2z + / 1 _witts) log -2l—tA;—I—dt,

M—gal—w(t+s)
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then

oy MO W) (w(s)? 2M
le) = “/.Ma[1—w<s)+(1—w(s)>2]‘°g|x—s|ds

1, 2M 1, 2M
S (M)IOgM—a; + SV ( M)IOgM+:v
= 2-1
By (7.25), (7.29), we get
n M
(7.32) h'(z) >2—-XCy for |z| < >
so that if A is small
(7.33) R"(z) >0 for |z| < %
By (7.25), (7.26), if X is small enough, then
, M
(7.34) h(z) > M-XCy; >0 for z> >
(7.35) B(z) < -M+MXC, < 0 for z < —%.

Take Ag so that (7.33)—(7.35) hold for A < Ag. Then h’(z) has only one zero in
[-M, M], say, at z = d. Then

(7.36) K(z) < 0 for —M<z<d
(7.37) K(z) > 0 for d<z <M.

Suppose now that b is the first free boundary point, i.e.,

. w(z) > 0 for — <zr<
7.38) ( f M b
(7.39) w) = 0 for b< M.

By regularity, w'(b) = 0. By (7.36), w > 0 on (—M, d). Hence b > d.
Let us define

w(z) for —M<z<b

w(z)
(7.40) 0 for b<z< M.

Since h'(z) > 0 for z > b, W is also a solution of (7.8)—(7.11). Since the solution is
unique (for fixed h), we have w = W, and hence b is the only free boundary point. O

We also have uniqueness if A is small.

THEOREM T7.4. There exists a number Ay > 0 so that the solution (w,h) to the
problem (7.8)—~(7.12) is unique provided that 0 < X < \;.

Proof. The proof is essentially the same as that in Theorem 5.1. It is necessary
only to check that

(7.41) b = All2i-m,a) < CMllw = il| L2 (- a0y

which is obviously true. O
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Remark. Several problems remain open: the uniqueness of the solution without

assuming that A is small, the shape of the free boundary in the two-dimensional case,
and the existence of the solution when p = ppe®* without assuming a small.
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SUR UNE CLASSE DE FONCTIONNELLES NON CONVEXES ET
APPLICATIONS*

RABAH TAHRAOUIY

Abstract. Various questions of physical or mechanical nature are frequently solved by a variational
approach. In many situations, minimizers for the total energy associated with the system are being sought.
This energy is represented by an integral functional

J(v)=J. g(x, v, Av) dx
o

where v is a vectorial function mapping a bounded open subset ) of R" into R™, and A is a differential
operator.

The goal of this paper is closely related to the study of the elastostatic equilibrium for materials whose
constitutive laws are nonlinear. In some realistic situations, the shape of the body, the nature of the
deformation, or some symmetric arguments require {) to be an annulus or a disc.

For example, let B be an isotropic and homogeneous body occupying a reference configuration &

before deformation and R’ after deformation
x=(X,X;, X3)ER>x"=x+u(x)eR’
where u(x) is the displacement function. It is assumed that the deformation is of the form
x=(r, 0,z)>x"=(u(r), 6 +v(r), z+w(r))

where r=((x2+x3)"/?z = x; and 0 = arctg (x,/x,). The associated energy can be represented by
Jy(u) =J g(U(lyl, u, Vu)) dy+2 f hy(lyl, u) dy
a a

where U is a certain function that will be specified later. The function J, is, in general, nonconvex; then
the direct method of calculus of variations is not applicable. The lack of weak lower sequential semicontinuity
does not make it possible to tend toward the limit in minimizing sequences. Despite this, some existence
and regularity results are proved by relaxation techniques.

Key words. elasticité non linéaire, fonctionnelle énergie, non convexe, calcul des variations, relaxation,
minimisation

AMS(MOS) subject classifications. 73G50, 73B05, S8E30, 49A50, 58G20

1. Introduction. L’étude de nombreux phénoménes physiques conduit a la
recherche de fonctions minimisant I’énergie interne du systéme. Cette énergie est en
général donnée par des fonctionnelles du type

J(v)=J g(x, v, Av) dx,

ou v=(v,,0,," ", Uy) désigne une fonction définie sur ’ouvert borné Q de R" a
valeurs dans R™, et A est un opérateur différentiel. Une motivation de ce travail est
I’étude de I’équilibre élastostatique de certains matériaux dont la loi de comportement
est non linéaire (cf. [6], [19], [15], [7]). La géométrie de certains corps et la nature
de leur déformation nous imposent de travailler avec Q) 4 symétrie radiale, i.e.,  est
soit une couronne soit un disque de R?, de centre zéro: il s’agit, par exemple, de I’étude

* Received by the editors March 1, 1988; accepted for publication (in revised form) February 2, 1989.

+ Université de Paris-Sud et Centre, Bitiment 425, Nationale de Recherche Scientifique, Laboratoire
d’Analyse Numérique d’Orsay, Orsay 91405, France and Université de Picardie, U.F.R. Cedex Mathematique
et Informatique, Amiens, France.
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du déplacement u = (u,, u,, u;) d’'un corps B élastique, isotrope, et homogéne qui
occupe les positions & =Q X ]—L, +L[ et &', respectivement, avant et aprés défor-
mation:

x=(x;,%,X%)ER>x"=x+u(x)eR’,
on suppose que cette déformation est de la forme
x=(r,0,z)>x"=(u(r), 0+ov(r), z+w(r))

avec r=(xI+x3)"? et z=x,; 0 désigne I'angle polaire du vecteur Om d’extrémité
m=(x;,x,). Sa densité d’énergie de déformation est supposée de la forme [16]
g.(U(|y|, u, Vu)) et son énergie totale est

(21) Ji(u)= L} g (U(lyl, u,Vu)) dy+ 2 Iﬂ hy(|yl, u) dy

ou U est une fonction assez spécifique que nous préciserons ultérieurement. De plus,
signalons que ces fonctionnelles sont en général non convexes (cf. [9], [5],[1], [10],[6]).
Le modéle de mécanique exposé ci-dessus a fait I’objet d’une étude en [12] avec
des hypothéses restrictives par rapport a notre travail. Notre méthode (cf. [4], [17])
est différente de celle mise en oeuvre en [12].
Nous aborderons également I’étude de fonctionnelles plus générales que les
précédentes, de la forme

(2,) Jz(”)‘""j g(x[, [Voil, - -+, [Vom]) +A J hy(|x|, v) dx
Q Q
ou Vo =9v;/9x;, (1=i=n, 1 =j=m), désigne la matrice gradient de v, et celles du type
(P3) J3(v) = J 83(Av) dx+ I h(|x|, v) dx
Q Q

ou Av=(A,v,, A,0,) est un opérateur différentiel uniformément elliptique.

Etant donnée une fonctionnelle J(v) semi-continue inférieure faible séquentielle-
ment (s.c.i.f.s.), la méthode directe du calcul des variations consiste a considérer une
suite minimisante u, convergeant vers u, et a passer a la limite dans J(u,). La s.c.i.f.s.
permet alors d’avoir I'inégalité essentielle

lim J(u,) = J(u)

prouvant ainsi que u réalise le minimum de J(-).

La difficulté majeure que ’on rencontre dans I’étude des fonctionnelles introduites
ci-dessus provient de ’absence de semi-continuité inférieure séquentielle faible qui
rend inopérante la méthode directe du calcul des variations [9], [8].

Pour la résolution de ces problémes, nous utilisons 1'idée de base contenue dans
[3]. La conclusion proviendra d’une analyse fine des conditions d’extrémalité pour
obtenir des informations qualitatives sur les solutions des problémes relaxés correspon-
dants. Cette analyse fine est intimement li€e & la structure de chaque probléme. Dans
cette étude, nous ne présenterons en détail que les points spécifiques aux problémes
abordés ici.

Nous traiterons également dans ce travail la question de 'unicité.

Enfin signalons que ce travail a été annoncé dans [18].

2. Hypothéses et notations du probléeme (£?,). Pour simplifier I’exposé nous
prendrons, d’une part des “fonctions modéles” U de type assez simple mais suffisam-
ment expressives pour la méthode, et nous travaillerons, d’autre part, dans ’espace
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fonctionnel V= H'(Q); ce qui nous améne 2 supposer les hypothéses de croissance
convenables sur les fonctions g, et h,. La premiére est une fonction de R dans R
réguliére, paire telle que

d kk
(1) 0<00§t_1-—%—(t)§0, Vi,
(2) a,t’+b,=g,(t)Sat5+b, Vi,

ol a, et a, sont des constantes positives et gF* désigne la convexifiée de g,. La seconde
est une fonction réguliére de [a, b]xR® dans R satisfaisant

(3) alnfP+di=h(s,n)Sclnl’+d, V(s 1),

ou ¢, est une constante positive et ¢; une constante convenablement choisie;

@) %(r,n)é& i=2,3, V(r,n)ela,b[ xR,
oh
(5) —(r,m)=0,
om
h h
(6) B )+ () <0 V(r, m) e la, BLXR®.
a3 a2

La fonction U est supposée de la forme
U= U(|x], v, Vo) = Vo, "+ B2(|x], v1) - [V 0, +|V 05|

ou B est une fonction réguliére qui vérifie

(7) B(s, )= Bo>0,
(®) Bi(s, =L (s =0,
as
9) t-%lt} (5,8)=0, ¢! %—? (s,t)<c pour t voisin de zéro.
On note:

I ={xeR?|x|=a}, T,={xeR?/|x|=0>b},
Q={xeR?/a<|x|<b},
(10) Vi=(Hg(Q)*+¢,
ol ¢ = (¢, ¢, ¢3) appartenant 3 (H'(Q))? vérifie les conditions aux limites
(11) e/Ti=a=(aj, a2, 03),  @o/Ta=v=(71, 2, ¥3);
les a; and v; sont des constantes supposées vérifier, pour fixer les idées,
(12) $;=vi—a;>0, i=2,3,
(13) a,=0, y,>0.
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Nous voulons montrer que le probléme
(?,) Trouver une solution de inf {J,(v), ve V;}

admet au moins une solution, et que cette derniére posséde une symétrie radiale. Cette
propriété de la solution désirée nous ameéne a associer a (%,) le probléme relaxé, en
dimension un d’espace:

() Trouver u dans V, solution de inf {J,(v), ve V;},
I’espace V, et la fonctionnelle J, sont définis par
={ve H'((a, b))’/ vi(a) = a;, v;(b) = v},

b

b
fl(v)=J rg¥¥(V(v)) dr+ A J rhy(r, v) dr,

a a

(V(0))* = (d—”r) +B7(r, ) - (d”z) +(-‘Z’7)

Pour simplifier la présentation nous noterons, si nécessaire, v’ = dv/dr. Le probléme
(7,) admet au moins une solution u =u,. L’idée est de montrer que u vérifie
gy*(V(u(r))=g(V(u(r))) p.p.rela,bl.
Ce sera I’étape 1. L’étape 2 sera consacrée a la régularité de u. Enfin a ’étape 3, nous
montrerons que la fonction @(x) = u(|x|) est solution de (%,).
Etape 1. Cette étape comprend plusieurs propositions.

ProPOSITION 2.1. On suppose les hypothéses (1)-(3), (10), et (11). La fonction u
solution de () satisfait les relations d’extrémalités suivantes:

ou I’on a noté

)
(14) B ui=—p,
¥y oh
(15) r BTV g g a2 (o wy= pt,
\% am
**r(V)
(16) r 8 B us=—ps,
**r(v) ,
(17) r gl_v—’u3=“P3,
oh
(18) Ar-—(r,u)=-p;, i=2,3,
om;

ouV=V(u),B,=0B/dt(r, uy), et g¥*'(t) = dg¥*/ dt. De plus les fonctions p;, u; appartien-
nent @ Wh%(a, b), i=1,2,3.

Démonstration. La preuve de ce résultat s’obtient aisément a partir des équations
d’Euler de ;:

—-fi-(ra u1)+/\r (r u)+ro- BB, (uh)*=0,
- (ra- Bzug)ﬂr——‘- (r,u)=0,
dr an,

—-—‘-i— (rau3)+Ar (r u)=0.

Nous la laissons au lecteur.
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Les p; étant ainsi définies, considérons la fonction de L™(a, b)

0= () () ()

nous avons le résultat suivant.

ProPOSITION 2.2. Nous supposons (1)-(8) et (10)-(12). La fonction v(r) appartient
a W"%(a, b); de plus, il existe Ao>0 tel que pour tout A, 0<\ <A,, on a vh(r)<O0,
us(r)=0, et uj(r)=0 p.p.r dans Ja, b[.

Démonstration. v(r) appartient 3 W"-(a, b) car p, p3 appartiennent a C'([a, b]);
et 1/B2 et p3 appartiennent 3 W"*(a, b). Ainsi, la dérivée au sens des distributions

2p2p3 , 2p3ps
2n2 + 2
r'g r

2006002503
r r rB r B rB3
appartient 3 L™(a, b). Transformons quelque peu cette expression de »'(r) a I’aide de
(14), (15), et (16); nous obtenons

2 2 ’2 2 1 2 2 2 3 2 2 1 P 2
(19) y'(r)=72.[p3127 +p3.p§:| _;[(%) +(-€E) +(-I-);-) ]__gi(f_ﬁ.)

on voit bien que 'on aura »'(r) <0 si 'on montre par exemple que

!
V,(r) = 2p;2p1

!
p3- P§+p_2%<0-
B
Remarque 2.1. Les solutions (u;, p;), i=1,2,3 du syst¢tme (14)-(18) dépendent
du parametre A, i.e., que I’on a en fait

(20)

w=u}, p;=pi,
On montre aisément les estimations suivantes:

" u? " lL°°(a,b) =q
(21)

lut b ap=c

P ran =c

i=1,2,3.
i=1,2,3,
i=1,2,3,
i=1,2,3,

ou c=c(g;, hy, a, b, §;) désigne diverses constantes indépendantes de A.
Montrons (20). Par une intégration par parties a partir de (16) et (17), on montre

les inégalités suivantes:

0<8,=u,(b) —uy(a)
=—py(b)Z(b) -2 J
0<8;=u3(b) —us(a)

=—p3(b)Z3(b) — A J

" V-ds
0]

b
h
rb (r,u)-2,dr,
9”2

a

b
oh
r—(r,u)-Z,dr
M3

a

V-ds

()= L s-g¥¥'(v)
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Et ainsi, grice aux estimations (21), il existe A,>>0 tel que pour tout A dans 10, Ao[
on a
—p,(b)z,(b)>0, i=2, 33
ie.,
Pu(b)<0, i=2’3;

ceci entraine que les fonctions p, et p; sont strictement négatives puisque nous avons
supposé I’hypothése (4) a savoir

oh

—(rnm)=0, i=2,3.

an;

Et enfin ’hypothése (6) entraine que (20) est vérifié, i.e., v'(r) <0. Ainsi s’achéve la
preuve de la proposition 2.2. O
Remarque 2.2. Une question naturelle se pose: a-t-on une propriété de monotonie
pour u,?
La réponse a la question ci-dessus nous sera donnée par la proposition 2.4.
PrOPOSITION 2.3. Sous les hypothéses (1) a (8) et (10) a (12), toute solution u du
probléme () satisfait
gi*(V(u(r)))=g:(V(u(r))) pp.rela, bl
Démonstration. 11 suffit de montrer que ’ensemble
E={rela, b[/gt*(V(u(r))) <g.(V(u(r))}
est de mesure nulle. Cela se montre, comme dans [17], 4 ’aide de la propriété suivante
de la fonction » conséquence de la proposition 2.2:

{rela, bl/v(r)=1t}|=0 Vi

Remarque 2.3. La fonction v étant sans palier, il est aisé de voir que ’on a de
plus le résultat suivant: s’il existe une partie affine commune aux graphes de g, et gF*,
soit par exemple

A={(1, g:(1)), te K} = R?

K ={reR/g\(t)=g¥*(t) = ¢ = constante}

alors I’ensemble {r e ]a, b[/ V(u(r)) € K} est de mesure nulle. Ainsi “n’interviennent”
que les parties strictement convexes du graphes de gf*.

Cette information nous sera utile pour obtenir un résultat d’unicité (cf. le
théoréeme 2.2).

Revenons maintenant a la monotonie de u,. Pour cela nous aurons besoin des
hypothéses supplémentaires (9) et (13).
PrOPOSITION 2.4. Si I’on suppose que (9) et (13) ont lieu, alors on a

pl(r)§0 Vr,
ui(r)=z0 pp.r,
Osu(r)=y, Vr

Démonstration. La fonction u, vérifie ’équation

(. du B2\ /2.
—dr<rcr dr)+rcr[3(ul)(u2)2 u,

ul(a)=0a ul(b)=71>0’

I

0,
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avec ro = a, 0,> 0, (ub)’roB - B,/u; = 0. Le principe du maximum entraine que I’on a
u,(r)> O sur ]a, b[; d’autre part on a par (15) pi(r) =0 p.p. r, i.e., que p, est décroissant.
Et pour montrer que p, est négatif nous raisonnerons par ’absurde. Supposons qu’il
existe ro€ ]a, b] tel que p,(r)>0 Vre]a, ro[; (14) entraine que 'on a ui(r)=0 p.p.
re]a, ro[ i.e., u;(r) =0 pour tout r dans ]a, ro[. Ceci contredit le principe du maximum.
La conclusion suit. 0

Remarque 2.4. A travers la preuve de ce résultat il est aisé de voir que si u,(a) =
a,>0, il peut exister ro€ ]a, b[ tel que I'on ait

ui(r)=0 p.p.surla,rg,
ui(r)=0 p.p. sur ]ro, b[,
u,(r)=0 sur ]a, b[.
Remarque 2.5. Si I’hypothése (5) n’a plus lieu et si par exemple
hi(r,m)=Ah(r, my, m3) +yk(r, 1), O<A=A,, 0<y=1y,

étant deux parameétres réels indépendants, alors le résultat de la proposition 2.2 subsiste
pour A, et vy, suffisamment petits. En revanche, nous ne pouvons obtenir un résultat
de monotonie sur u,, propriété dont on aura besoin a la § 4 ol est traité un exemple
issu de I’élasticité.

Etape 2. Régularité de u solution de (1,). D’apreés la proposition 2.2, la fonction
v(r) est continue strictement décroissante. Introduisons, suivant [17], les notations
suivantes qui nous seront utiles pour le résultat d’unicité:

%k
E(A)={7€R+/dgd—;(7)=l\}, AR,

a(A)=inf{y, ye E(A)},  b(A)=sup{y, ye E(A)},
k%

s=(AcRaW)<bW),  ¥()=5T (),

Soit Ag<A;<A,<---<A,--- les éléments de S. La fonction continue

dgt*
5 (V@)

¢(r)=vv(r)=

étant strictement décroissante, il existe une suite de nombres réels
{seheZo' < [a, b]
satisfaisant
d(s)=Ay, k=0,1,---,n,.
D’apres la remarque 2.3 la fonction
(¥ /16cA00,a(A0s0D(E)
est inversible puisque g¥* est strictement convexe sur 1b(Ay), a(Ags,)[. Ainsi:
V(u(r))= [l/’/]b(Ak),a(AkH)[]_l((b(r))

pour tout s € sy, sg+i[, i-e., la fonction V(u(r)) est continue sur ]si, si+y[ tout k=
0,1, -, n,. Ceci prouve a I’aide de (1) et de la proposition 2.2 que u(r) et ¢(r) sont
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de classe C' sur ]sy, si1[; donc V(u(r)) est C' sur ]si, s+, [; et ainsi de suite on
montre que u est C* par morceaux si g, et h; sont C~.

Ainsi, nous venons de démontrer le résultat suivant:

PROPOSITION 2.5. La fonction u solution de (m,) est C* par morceaux si g, et h,
sont C*,

Etape 3. ii(x)=u(|x|) est solution de (%?,).

Comme conséquence des 2 étapes précédentes, on obtient le résultat suivant.

THEOREME 2.1. Sous les hypothéses (1) a (8) et (10) a (12), il existe A, tel que le
probléme (P,) admet, pour tout A dans 10, Ao[, une solution i possédant les propriétés
suivantes:

(1) @(x) est radiale: u(x)=1(|x]|),

(2) [Va(x)|=C p.p. xeQ

(3) 1 est C* par morceaux si g, et h, sont C*,

(4) 1, et i, sont croissantes le long des rayons.
De plus si (9) et (13) ont lieu i, est croissante le long des rayons.

Démonstration. 11 suffit de voir que #(x) = u(|x|) convient. 0

Abordons maintenant I'unicité. Rappelons que ce point n’a pas été abordé dans
[4] et [17]. Nous avons le résultat suivant.

THEOREME 2.2. On suppose B(r, t)= B(r), h convexe, et (1)-(8) et (12). Alors (m,)
admet une solution unique.

Démonstration. La preuve de ce résultat nécessite une étape préliminaire: le lemme
2.1. Soient u # w deux solutions de (7r,). Elles vérifient

gi*(V(u(r)) =g:(V(u(r))) pp.relabl,
gi*(V(w(r)) =g(V(w(r))) pp.rela,bl;

pour tout 6 dans [0, 1], 1a fonction ug = 6u+ (1 — 6)w solution de (7,) vérifie la méme
relation:

(22) gi*(V(uy(r))) = 8:1(V(uy(r))) p-p.rela, bl Voe[0,1].

D’apres le résultat de régularité il existe une partition de ]a, b[ en intervalles J, =
Isesical, k=1,2,- -, ny tels que: u'(r) et V(u(r)) soient continues sur J, pour tout
k. Quitte a redécouper les J; en sous-intervalles, on peut toujours supposer que «'(r)
et V(w(r)) sont continues sur J; pour tout k. Posons alors

U(r, 0) = V(uy(r))
=[(uie)*+B(r) - (ue)*+(u3)1"

ou uy(r)=0u(r)+(1—0)w(r). Il est clair que %(r, 6) est continue sur J,x]0,1[ a
valeurs dans

F={teR"/g¥*(1)=g\(1)}.

Nous avons le résultat suivant.

LeMME 2.1. Nous avons J,NV(u)"'(I)=J, N V(w) '(I) pour tout k et toute
composante connexe I de F.

Démonstration. 11 suffit de montrer que I’on a

V) (L) NJLIN[V(e) (L) NS]=D

pour tout k et toutes composantes connexes de F, I,, et I, telles que I, # I,. Nous
raisonnerons par I’absurde.
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Supposons qu’il existe k,e[1,- -, n,] et deux composantes connexes I, et I,
(I, # I), de F tels que I’ensemble

Q=V(u)'(I)N V(o) (L) NIy,
soit non vide; soit ro€ {); nous avons
V(u(ry))=U(ry,1)e I, V(w(ry)=U(ry,0)e I,
et puisque U(Jy,x 10, 1[) est connexe, il existe 6,€ ]0, 1[, 8, et §, tels que
U(ro, Bp) €184, 8:[= K
ou K est le complémentaire de F. Et par continuité il existe un voisinage ¥'(r,) tel que
U(r, 05) €16,, 8, Vre V(ry),
c’est a dire
81(V(ua,(r))> g1*(V(ug,(r))) p.p.re ¥(ro)

contredisant ainsi (22). Ainsi le lemme 2.1 a lieu. 0
Démonstration du théoréme 2.2. Si u # w, d’aprés la remarque 2.3 et le lemme 2.1,
il existe koe[1, - -, n,] tel que

| arvaomar<t[ arvaemat [ vy an

0

cette inégalité entraine la contradiction
Ji(uy2) <Inf{Jy(v),ve Vi}.
Remarque 2.6. Le théoréme 2.2 entraine que la solution radiale de (%,) est unique.

3. Hypothéses et notation du probléme (P,). Soit la fonction g, de [a, b] x R*> dans
R, réguliére telle que

(1) a |t +b(r) S g(r, ) S ay|tf+by(r) V(1)

ol les a; désignent des constantes positives et les b; des fonctions L™(a, b). Désignons
par g¥*(r, ) la convexifiée de g,(r, -) par rapport a t, a r fixé, et posons:

(2) K ={(r, 1) €[a, bIXR?/ g**(r, 1) < go(r, 1)}.

On suppose que, d’une part les composantes connexes ¥; de ¥, indexées par I, sont
au plus dénombrables:

(3) H=U I

iel
d’autre part, pour tout i dans I il existe une fonction
ki:(r,t)ela, b[xR*> ki(r, 1) eR
affine en ¢ telle que
(4) gi*(nt)=k(r,t)=0i(r) - t+&(r) Y(r,t)ed;
ou o; = (o}, 0?) sont deux fonctions de W"¥(a, b) satisfaisant:
2

(5) Y al(r)-al'(nz0 pp.rela, bl

Jj=1
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Cette hypothése (4), (5) jouera un rdle essentiel dans I’existence. On suppose aussi
que g, vérifie

-1 38;:* ..
0<6,=t; ~——ét—(r, N=0:(r, ) Vi=(4,t) Vi#j,
(6)

O§ 0,'(", t]) = Yi
ou 6, et y; sont des constantes positives:

g2(r, t]at2)=g2(ra 81t1982t2) V(ra t)’

&g, ==1, g,==%1.

(7

On se donne une fonction h, de [a, b]1xR? dans R, réguli¢re telle que
(8) 01|Tl|2+d1§hz(’, 7I)§Czl7l|2+d2 Y(r,m),

ol ¢, est une constante positive et ¢; une constante réelle convenable:
dh
9 a—z(r,n)<0 V(r,m), i=1,2.
Ni

Nous nous proposons alors de résoudre le probléme suivant:

(%,) Trouver i dans V, solution de inf {J,(v), ve V,}

.

ou
J(v)= I g(|x|, [Voil, [Vo,|) dx+ A I hy(|x|, v) dx,
Q Q

V,={ve (HI(Q))Z/ vyr, = d;, Vyr, = Bi};
a; et B; sont des constantes données, qu’on suppose satisfaisant, pour simplifier,
I’inégalité
(10) a; < Bi, i=1,2.

L’idée utilisée pour résoudre (2,) reste valable: on part du probléme variationnel, en
dimension un d’espace, qui est naturellement associé a (%,):
() Trouver u € V, solution de inf {J,(v), ve V,}

avec

b

b
J(v) =J rg¥*(r, v}, vy) dr+ A J rhy(r, v) dr,

‘72'—' {ve(H'(a, b))*/vi(a) = a;, vi(b) = Bi}.

Ce probléme relaxé (,) admet au moins une solution u = u* satisfaisant les relations
d’extrémalités

ag*

r (rnu)=-picH'(a,b), i=1,2,

1

(11)
dh, , )
rA—=(r, u) =—pi, i=1,2.
on;
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Nous allons montrer (comme précédemment) a I’aide des hypothéses (3)-(5) et (9)
que pour tout i € I I’ensemble

E;={rela, b[/(r,u'(r)) e ¥}
est de mesure nulle, i.e.,
g¥*(r,u'(r)) =go(r,u'(r)) p.p. rela, bl.
ProposITION 3.1. La solution u = u* de (,) satisfait
ul=(u})'=0.
Démonstration. Pour A dans ]0, 1] on montre les estimations suivantes:
il = Uil @y =, Ipller = pi b apy=c

ol c¢ est une constante indépendante de A. A I’aide d’une intégration par parties a
partir de (11) on obtient les relations

0<8;=u;(b)—u;(a)

=—pi(b)Zi(b) - A J

a

h
P2y S () dr
9n;
ou X; a pour expression
r k% -1
2?(r)=2i(r)=j ul(s) -%(a—gi——(s, u’)) ds, i=1,2.

On peut alors affirmer I’existence d’un A, dans ]0, 1] tel que
—p}(b)EH(b)>0 VA ec]0A,]

Cette inégalité entraine p;(b) <0 puisque Z;(b) est strictement positif a ’aide de (6);
ainsi on a

(12) pi(r)<0 Vre[ab], i=1,2,
en vertu de ’hypothése (9). Par conséquent on peut dire, utilisant I’hypothése (6), que
9 kk

o=r-u}- &2 (r,u')=—p;* uj,

ie.,
ui(r)z0 p.p.relabl, i=1,2.
Ceci termine la preuve de la proposition. 0
ProrosITION 3.2. La fonction u vérifie

(13) g3*(r,u'(r)) =g(r,u'(r)) pp.rela,bl.

Démonstration. Considérons la fonction »(r) =Zf=, (pi(r)/r)?; alaide de (12) et
(9) on montre que »'(r)<0 p.p. r€la, b[. Comme pour tout i and I la fonction
mi(r) =Zf=1 (0f)? est croissante, il s’ensuit que ’ensemble {re ]a, b[/u:(r) = v(r)} est
de mesure nulle; ce qui entraine que pour tout i dans I P’ensemble E;=
{rela, b[/(r, u'(r)) € ¥} est de mesure nulle. Ainsi (13) a lieu.

Enfin nous pouvons montrer facilement que u, appartient 3 W"*(a, b). Une
conséquence immédiate de ces résultats est le théoréme suivant.
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THEOREME 3.1. On suppose les hypothéses (1) a (10). Alors il existe Ao> 0 tel que
pour tout A dans 10, Ao[ le probleme (P,) admet au moins une solution ii. Cette solution
posséde les propriétés suivantes:

(1) @(x) est radiale, i.e., i(x) = u(|x|);

(2) |Va(x)|=cp.p. xeQ;

(3) u; est monotone le long de chaque rayon.

Remarque 3.1. 11 est possible d’envisager des fonctions g, dépendant de r, u, u’;
mais cela nécessite des hypothéses supplémentaires qu’il serait fastidieux de décrire ici.

4. Application. Nous considérons un tube T homogéne isotrope de section la
couronne C =[0, 27[ X ]a, b[. Nous supposons qu’avant déformation ce corps élastique
a ses génératrices paralléles a ’axe 0Z:

T=Cx[-L,+L]={(r, 0, z)€]a, b[ x[0,27]x[-L, L]}
ol nous notons

x=(x, x,), r=«/xf—+_x_§, x;=rcosf, Xx,=rsiné.
Nous nous intéressons aux déformations de la forme
1) (x,2)=(r, 6, z)>(u(r), 0+v(r), z+w(r))=(r, 6, z').

D’aprés [16], [2], les trois invariants principaux du tenseur de Cauchy-Green ont pour
expressions:

I, =(u’)2+(uv’)2+(w')2+<$)2+1,

2 Iz=(u’)2+(uv’)2+(y;u—’) +(%:) +($) ,

’

Is=—'
r

Dans la situation la plus générale, la fonction densité d’énergie de déformation a pour
expression (cf. la remarque 3.1)

W(Ily IZ’ I3) = g(ra u, u” D', WI)‘
Et dans ce cas la réponse au probléme n’est pas simple, notamment a cause de la
condition d’invertibilité
u(r) - u'(r
3) ulr) - wi(r) )r ( )>0.

Aussi, pour illustrer simplement ce qui précéde, nous allons examiner quelques situ-
ations particulieres.

Exemple 1. Le cas incompressible. La déformation est de la forme
(r,0,2)>(r, 0+ v(r), z+w(r))
I=I=L=rv)+W)+3, L=1,
W(I)=g(VI=3).

Nous représentons par U = (v, w) le déplacement et par T =9,TU3,T le bord de T
ou

61T= {(xa Z)/Z = iL}y
9, T={(x, 2)/|x| = a ou |x|=b}.

(4)
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Nous supposons que le déplacement est fixé sur 9,7

(5) (v, w)=(vo, wo) surd,T,
et que la traction ¢ est nulle sur 9,7
(6) t(x,=L)=0.

Alors le probléme de I’équilibre élastostatique de T s’écrit: trouver @ = (7, w) réalisant
dans I’espace V=(Hy(C))*+ (vo, wo), par exemple, le minimum de la fonctionnelle

@) J(v,w)=j g(vVI-=3) de+)xj h(|x|, v, w) dx
C C

ou h représente la prise en compte des forces volumiques. Le théoréme 2.1 s’applique.
Exemple 2. Le cas faiblement compressible. Nous supposons que la loi de com-
portement du matériau est telle que son énergie soit de la forme g(I), ou

I’=1,-2I,-1

AT

Remarque 4.1. Des situations particuliéres du méme type ont été envisagées par
divers auteurs: dans [13] et [14] par exemple, on considére des densités dépendant
uniquement du premier invariant I,.

Transformons quelque peu I’expression de I en posant
u(ry=r+r-y(r)=r(1+y(r)),
P=r(y)+r(1+y)*(v')*+(w)

On s’impose les conditions aux limites suivantes:
y(a)=0, ie., u(a)=a,

) y(b)=y,>0, ie., u(b)=>b(1+y),

v(a)=v,, v(b)=v,,
w(a)=w,,  w(b)=w;

la donnée y, sera prise assez petite. Ceci sera justifié plus loin. Il est difficile de contrdler
une minoration du terme positif 1+ y(r). Aussi nous perturbons la fonctionnelle J(-)
par

) J(y,v,w)= j

a

b b

g(f)rdr+A I h(r,y, v, w)rdr

N

ol
I=r(y)+r(1+05(»)(0) +(w)?,
la fonction o5(y) étant la régularisation classique de |y|:

os(y)=| ¥5(0) db,

JO
(1 si =6,
1
P5(0) =4 5

L1 si 0=-6,

& étant un parameétre réel, positif assez petit. Il est aisé de voir que I’on peut appliquer
les résultats du paragraphe 2 en s’imposant les hypothéses adéquates du théoréme 2.1;

-6 sid>0>-6,
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et en particulier on obtient que la solution ( 0,w) du probléme (9),
inf {J(y, v, w)/(y, v, w)}, vérifie:

0<J7(")§y1 Vre]a,b[’
y(r)z0 pp.r, 17'll c2(a,0y = Cos

ce qui donne bien la condition

!

uu _ _ —
T=(1+y)(l+y+ry )>0 p.p.r

Le modéle de fonction énergie que nous avons considéré est valable pour les matériaux
dont le comportement est voisin de celui des matériaux incompressibles (i.e., faiblement
compressibles). Il est utile de savoir, lorsque y, tend vers zéro, si notre probléme (8)
“tend” vers le probléme incompressible (6), et dans quel sens.

Nous avons le résultat suivant.

PROPOSITION 4.1. On se donne une suite y, , > 0 tendant vers zéro; et on considére
(¥n» U, W,,) une solution de (8). Alors on a:

(i) yn~ 0 uniformément,

(ll) "yil"Lm(a,b)—)Oa Uy > 6’ W, > w dans Hl(a’ b) falblea

(iii) (%, w) est solution du probléme incompressible (6);

(iv) u,u'/r—>1 dans L™(a, b).

La preuve s’obtient en établissant les estimations adéquates en suivant la méme
démarche que dans les paragraphes précédents.

Remarque 4.2. La perturbation suivante:

(10) I=r(y)2+ Q1 +[y)(v')*+ (w")?

permet également d’obtenir que j est positif; cependant elle n’est pas satisfaisante
pour notre méthode car I mest pas différentiable par rapport a y.

Remarque 4.3. 1l serait intéressant de savoir si I’on peut passer a la limite quand
é tend vers zéro et obtenir la résolution de notre probléme avec (10).

5. Fonctionnelles d’opérateurs elliptiques. Soit () un ouvert borné régulier de R";
on se donne, par exemple, deux opérateurs A, et A, uniformément elliptiques d’ordre
2m, a coefficients réguliers, et deux fonctions régulieres g; de Q xR? dans R et h; de
Q xR? dans R satisfaisant les hypothéses classiques de croissance suivantes:

(1) a,|t|? +b,=gs(x, 1) S a))t|’ +b,, 1<p<+00,
(2) Clln|p+d1§h3(x, ‘r])§cz|17|p+d2;

les constantes a,, a,, ¢, sont positives; ¢, est un réel convenablement choisi pour
assurer la coercitivité du probléme considéré. On se donne également les deux
opérateurs suivants:

A= Y (-1)"D*(algzD"?), alg=ap,, i=1,2
lsi=m
dont les coefficients sont supposés réguliers. Et on pose
(3) K ={(x,1) e QxR?/g¥*(x, 1) <gs(x, 1)}.

Nous faisons les hypothéses essentielles suivantes: il existe une famille I, au plus
dénombrable de fonctions a; = (a}, a?) dans (W>™P(Q))?, B;e L*(Q), d’ensembles



SUR UNE CLASSE DE FONCTIONNELLES 51

K; < Q xR? et une constante c tels que
K=U K, Viel,

iel

4
@ gt (x, ) =a;(x) - t+Bi(x) VY(x,t)eK,

>0 VneR® p.p.xeQ.

(5) Alal(x)-'-g!h(xa 7])+C<A2a2(x)+§'lh(x’ "7))
M P!

Remarque. Une condition du type (5) est donnée dans [4] dans le cas scalaire,
régulier et dans [5] dans le cas scalaire non régulier.

Enfin notons par V; I’espace (W>™?(Q) N W§"P(Q))*+ ¢, ou ¢ est une fonction
donnée dans (W?™?(Q))?; et soit & minimiser la fonctionnelle

Js(v)=J 8:(x, Ayvy, Ay0;) dx+J hy(x, v) dx
Q Q

sur I’espace V3. Alors nous avons le résultat suivant.

THEOREME 4.1. Le probléme (P;): inf {J3(v)/v € V3} admet au moins une solution
u=(u,, uy)eVs.

Idée de la preuve. Le probléme relaxé

(PR) inf{J g¥*(x, Av) dx+J hy(x,v) dx/ve V3}.
Q Q
admet au moins une solution u = (u,, u,) qui vérifient
a kg
Au) = p.
") (x, Au) = p;,
oh;

Aipi=a_-(xa u)a i=1a2

1

ou p;€ W*™?(Q). Comme dans le cas des problémes (2,) et (2,), on montre a I’aide
de (4) et (5) que I’ensemble

E={xeQ/(x, Au(x))e K}
est de mesure nulle, i.e., que 'on a
g¥*(x, Au(x)) = gs(x, Au(x)) p.p. xeQ,
montrant ainsi que u est solution de (%;). 0

Remerciement. Je remercie le référé pour ses remarques qui m’ont permis
d’améliorer la présentation de ce travail.
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SEMIDISCRETIZATION METHOD FOR THREE-DIMENSIONAL MOTION
OF A BINGHAM FLUID*

JONG UHN KIMf¥

Abstract. By the method of semidiscretization in a time variable, the existence of a strong solution to
an initial boundary value problem associated with the three-dimensional motion of a Bingham fluid is
established. The main tool used is a discretized version of the variation of constants formula combined with
the L”-theory of the Stokes operator.

Key words. Bingham fluid, semidiscretization method, variation of constants formula, L-theory of the
Stokes operator

AMS(MOS) subject classifications. 35B10, 35B65, 35KSS, 76D99

0. Introduction. In this paper, we present a new result on the existence of solutions
of an initial-boundary value problem associated with the motion of a Bingham fluid
in a three-dimensional domain. A Bingham fluid is a rigid viscoplastic fluid that is a
particular kind of non-Newtonian fluid. This material behaves in a rigid manner when
a certain function of stresses does not reach the yield limit; it moves like a Newtonian
fluid beyond this limit.

Common examples of Bingham fluids are slurries, drilling muds, oil paints, and
toothpaste. Engineering applications (particularly in the chemical and process indus-
tries), such as experimental techniques, rolling and extrusion processes, and heat
transfer, are discussed in [16], where a list of engineering references will also be found.
For the continuum mechanics foundations, see [13].

Since the relation between strains and stresses becomes very different depending
on the state of stresses, the motion of a Bingham fluid cannot be described by a single
equation. This difficulty was overcome by Duvaut and Lions, who derived a variational
inequality that can take care of the unknown interface between rigid medium and fluid

zone [3], [4]. They formulated an initial-boundary value problem for a Bingham fluid
as follows:

(0.1) (ou/at,w—u)+a(u,w—u)+b(u, u,w)+J(w)—J(u)=(f,w—u) in (0, T),

for each test function w such that V- w=0in ) and w=0 on 3},

0.2) V-u=0 inQx(0,T),
(0.3) u=0 onasQx[0, T],
(0.4) u(x, 0) =uy(x) inQ.

Here, Q is a bounded domain in R* with C*® boundary aQ, u(x, t) denotes the velocity
of the fluid, and f(x, t) stands for external force. The density, the yield limit, and the
viscosity are assumed to be positive constants. In particular, the density is taken to be

* Received by the editors October 5, 1987; accepted for publication (in revised form) February 2, 1989.
This research was supported by Air Force Office of Scientific Research grant AFOSR-86-0085 and by National
Science Foundation grant DMS-8521848.

T Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
24061.
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1. We employ the notation:

3
a(u,w)= Y 2u J D;j(u)D;(w) dx, = viscosity,
i Q

i,j=1

1/0u; du;
D.. = =4+
i (1) 2(axj ax,->’

J(u)=2g[ Dyn(u)*dx,  g=yield limit,
Q

13 2
Dp=- Y Dij(u) »

2=

3 J aY;
b(u,v,w)= Y, u;— w; dx.
ij=1Ja 9%
(,) is a scalar product that will be defined in the next section.

The conservation of momentum is expressed by (0.1) and the condition of incom-
pressibility is given by (0.2).

It is easy to see that (0.1) reduces to the Navier-Stokes equations if the yield limit
g vanishes. The nondifferentiable functional J(-) causes a serious mathematical
difficulty in addition to the difficulties inherited from the Navier-Stokes equations.
This makes the initial boundary value problem very challenging. In the case of laminar
flow in a cylindrical pipe, the problem simplifies to a special case, for which the
mathematical analysis is complete. This special case also has been used as a typical
model in the finite-element analysis of parabolic variational inequalities (see [8] and
references therein). We focus on the existence of solutions to the more general problem
in a three-dimensional domain.

We will survey known results that have motivated the present investigation.

Duvaut and Lions [3] have proved for the first time the existence of weak solutions
of (0.1)-(0.4). The weak solutions according to the definition in [3] and [4] belong to
the same function class as the Leray-Hopf weak solutions of the Navier-Stokes
equations. For a three-dimensional domain, these weak solutions satisfy a weak version
of (0.1) and the uniqueness of weak solutions is an open question.

It is known that for smooth data, there is a local strong solution to the initial-
boundary value problem for the Navier-Stokes equations. For the Cauchy problem
associated with (0.1) in R? or R?, it is known that strong solutions (local in time in
R®) exist if the data are regular. The result is the same as that for the Navier-Stokes
equations (see [9], [14]). For the initial-boundary value problem shown above, a
different kind of strong solution was obtained in [3] and [4] in the case of a two-
dimensional domain. An analogous result was established in [10] for a three-
dimensional domain by assuming that the initial data are stationary states with external
force in L*(Q)*. Under the same assumption on the data, Naumann and Wulst [12]
obtained a similar result for a variant of a Bingham fluid through a different method.
This assumption on the initial data is not satisfied in general even by C*™ divergence-free
vector fields with compact support. Hence, this is not an ordinary regularity assumption
and is very restrictive.

The purpose of the present paper is to eliminate this assumption on the initial
data. We show that if the initial data are divergence-free vector fields that belong to
L’(Q)%, r>3, and whose normal component vanishes on the boundary, there indeed
exists at least a local solution regular enough to be unique (see Theorem 2.2). The
result is comparable to that of Giga and Miyakawa [7] for the Navier-Stokes equations.
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The basic approach for the problem (0.1)-(0.4), initiated by Duvaut and Lions,
consists of three steps. The first step is to reduce inequality (0.1) to an equation by
substituting a differentiable function with regularizing parameter for J( - ). The second
step is to obtain a solution for the regularized problem together with uniform estimates
independent of the regularizing parameter. The third step is to prove that the limit of
a sequence of approximate solutions exists and is a solution of the original problem.

In the second step, we are tempted to use one of two well-known techniques for
the Navier-Stokes equations. One such technique is the Galerkin approximation
method. For our problem, it seems that we cannot obtain enough estimates independent
of the regularizing parameter through this method unless special assumptions are made
on the initial data as in [10]. The other method, used in [7], is to set up the variation
of the constants formula involving the analytic semigroup generated by the Stokes
operator in L'(Q)’ and then to employ the related iteration scheme to find a solution.
When we attempt to apply this method to our problem, serious technical difficulties
arise. These difficulties can be avoided, however, if we use a discretized version of the
variation of the constants formula. The method we will use is basically the semidiscretiz-
ation method used in [15] to give an alternate proof of the existence of the Leray-Hopf
weak solution to the Navier-Stokes equations. While our scheme of discretization is
a slight modification of that used in [15], we obtain substantially better estimates by
interpreting the scheme as a discretized version of the variation of the constants formula,
and we retain all the basic L? estimates of [15]. The estimates obtained through this
procedure are sufficient for the pointwise convergence of approximating solutions.

Finally we also prove the existence of global solutions and time-periodic solutions

by assuming that the initial data and external force are sufficiently small; see Theorems
3.1 and 3.2.

1. Notation and preliminaries. Throughout this paper, )} denotes a bounded
domain in R? with C* boundary. We employ the notation defined in the Introduction,
as well as the following:

9 3
at ai=_ fOI' 1=1, 29 3’ A= Z a?, V=(81,62,83),
i=1

Tt ax;
3
V.-f= El a.f; forf=(f1,12,/3).

When E is a Banach space, L'(0, T; E) is the set of all E-valued strongly measurable
L" functions on [0, T] with the obvious norm. C(I; E) is the set of all E-valued
continuous functions on the interval I

We introduce the following function spaces:

S={peCF(Q)*:V-¢=0inQ},

W™'(Q)={ve L' (Q): 47195985 ve L'(Q), 1= a;+a,+ a;=m},

W () = the completion of Cg(Q) in W™"(Q),

W™ ™" (Q) =the dual of W' (Q), where 1/r'+1/r=1, 1=r<oo,

X, =the completion of S in L'(Q)?, 1<r<oo,

V=W (Q)’NX,,

V' =the dual of V.

( , ) stands for the duality pairing between V and V'. In particular, if v € X, and
we V, then (v, w) coincides with the scalar product of » and w in X,. We can
characterize X, by

X,={ve L'(Q)* V- v=0in Q and the normal component of v vanishes on 3Q}.
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We let P, denote the projection from L'(Q2) onto X, and write the Stokes operator as
A,=—PA forl<r<oo,

with the domain
D(A)=W>(QPN Wy (Q)>PNX,.

We list some basic properties of A,. Giga [5] proved that for any € >0 and 1 <r <o,
there is a positive constant C,, such that

(1.1) IAT+A) = C../1A|

for all A € C such that A #0 and |arg A\| = 7 — ¢, where ||+ || is the norm of a bounded
linear operator from X, into X,. We also note that zero belongs to the resolvent set
of A,.

Using (1.1), we can define A?, 0< 6 <1 by the Dunford integral and the domain
of A? is defined by complex interpolation:

9(A"“,)=[Xra @(Ar)]O’ 0=0=1

(see [6]). Since D(A,) is compactly embedded into X,, we have Lemma 1.1.
LEMMA 1.1. For 0= 6,< 0,=1, the embedding B(A%)c D(A?) is compact.
Next we obtain some estimates to be used later.

LEMMA 1.2. Let 1<r<o and 0=a =1. Then, for any integer k=1 and any
0<e=l1,

(1.2) IAY(I+eA,) 7 | = C,. exp (—8ek)/ (ek)*,

where C, , and & are positive constants independent of ¢ and k.
Proof. By virtue of (1.1) and the fact that the resolvent set of A, contains zero,
we can write, for any positive number A and any integer k=2,

(1.3) -A,(AT+A,)7F =——1—, J z(A—z2) Xz + A,) " dz,
27 r

where I'={—¢+pe”: 0= p <oo}U{—¢+pe : 0= p <o} and we choose £>0, 7/2<
0 < and the orientation of I" so that I is contained in the resolvent set of A, and
ImT is increasing along I.

It follows from (1.1) and (1.3) that

o

A, (A T+A) ™ |=M I (A+ &+ plcos 6])“ dp,
0

4
(1.4) =MOA+&)(k-1),

where M denotes positive constants independent of A and k. Hence, by setting e =1/A
and assuming 0<e =1, we derive

A, (I+eA,) ™ | =M1 +e£) ™" /e(k—1)
=M exp (—8,ek)/(&k),

where M and 8, denote positive constants independent of ¢ and k. The second
inequality in (1.5) is also true for k =1, which is easily seen by virtue of (1.1). Since
A, is the infinitesimal generator of a bounded analytic semigroup and the resolvent
set of A, contains zero, it is known that for any integer k=1,

(1.6) IAT+A) ™ |=sMQ+§)7%

(1.5)
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where M and £ are positive constants independent of A and k. Hence, by setting
e =1/A, we have

(1.7) I(I+eA) ™ |= M1 +eé)™,
which, together with the assumption 0 < e =1, yields
(1.8) (I +€eA,) || = M exp (- 6,¢k),

where M and 8, are positive constants independent of ¢ and k. For 0<a <1, we
obtain (1.2) from (1.5) and (1.8) by means of the interpolation inequality.

LEMMA 1.3. Let 1 <r<oo and 0<a =1. Then, for any integer k =1 and any £ >0,
we have

(1.9) I((I+eA,) ™ =1)A;*|| = C,(ek)*,

where C, is a positive constant independent of € and k.
Proof. We first note that

(1.10) (I+€A,) '—I=—cA,(I+eA,)",
which, combined with (1.7), yields
(1.11) I((I+eA,) ' =A=&M,

where M is a positive constant independent of e. Following [2], we write for k=2

(1.12)((T+eA,) * = DA ' =((I+€A,) ' —1)A;! +'§l (I+eA,)((I+eA,) '—-1)A".

J
Again by (1.7), we derive from (1.12)
(1.13) I((I+eA,) ™ —I)A;'|| = Mek,

where M is a positive constant independent of ¢ and k. Inequality (1.9) is now a
simple consequence of (1.7), (1.11), and (1.13) through the interpolation. 0

LEmMMA 14. Let ve X,, 1<r<oo. Then, for any given £>0, there is 6(& v)>0
such that for all e >0 and k=1 satisfying ek = 5(¢, v),

(1.14) [((I+eA) ™ ~Dollx, =&

Proof. Suppose that the assertion above is false. Then there are ¢>0, {¢,},-; and
{kn}o-, such that £,>0, k,=1, &,k, >0 as n-> o0, and

(1.15) I((I+e,A,) " —I)v||x,>¢& for all n.

It follows from (1.13) that for all we @(A,),

(1.16) (1 +£,A,) 7" = D wl|x, = Me,k, || Aw| x,

where M is a positive constant independent of ¢,, k,, and w.
In the meantime, (1.7) implies that

(1.17) I(I+&,A,)™ —I|=M for all &, and k,.

We now choose we P(A,) such that

(1.18) lo—wlx, = ¢&/2M.

Then we find that

(I + e,A) ™ = Dol x, = [((I + €,A4,) ™ = D)(w =) | x, + Meka | Aw| x,
) <16+ Mok | Al
which contradicts (1.15) as ¢,k, > 0. This concludes the proof. 0

(1.19
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We list some properties of the operator A?P,3;, j=1,2, 3, that are proved in [7].
Let 1 <r<oo. Then there is a positive constant C, such that

(1.20) |AS 2 Popllx, = Cllvllry, §=1,2,3,

for all ve W'(Q)*. Hence, A;">P,3; can be extended to a bounded linear operator
from L'(Q)* into X,, 1<r<o0.If 3<r<oo, 6r/(3+r)<p=rand 6 =3+3(2/p—1/r),
then there is a constant C,, such that

(1.21) A2 Powl x, = C,pllvllr2y  for all ve W (Q)°.

Hence, A;°P,5; can be extended to a bounded linear operator from L"/*(Q)’ into
X,(Q), for3<r<o, 6r/3+r)<p=r.If3<r<om,0<v<3/2rand 6§ =3/2r+3-2v,
then there is a constant C, such that for all v, we @(A,),

3
(1.22) IA7°P, 2 9(ow)lx, = Gl Arv]x | A7
j=

where v = (v,, v, v;).

Hence, the mapping (v, w)> A, °P, Z ,9;(yw) can be extended to a bounded
bilinear mapping from @(A?)? into X,.

Next we consider the boundary value problem:

(1.23) u—eAu+Vp=h inQ, £>0,
(1.24) V-u=0 inQ,
(1.25) u=0 on Q.

It is understood that (1.23) and (1.24) hold in the sense of distribution in Q. If h =90
and ve L'(Q)?, 1 <r<oo, then the unique solution of the problem above in W§"(Q)>
can be expressed as

(1.26) u=AY*(I+eA,)'A;’Pov.

Suppose that 3<r<o0, 6r/(3+r)<p=r,6=3+3(2/p—1/r) and that h = Z L0;(uw),
where v=(v,, v, v;) and v, we X,. Then, the unique solution in Wy ”/2(0)3 can be
expressed as

3
(1.27) u=A¥I+¢A,)'APP, .z 3;(vw).

If3<r<o,0=v<3/2r,8=3/2r+3—2v,and h = Z L 9;(vw) with v, we D(A;), then
the unique solution in W§"/%(Q)> can be expressed as

(1.28) u=A%I+¢A,)'A°P, z 3,(vw).
j=1
These expressions will be used in the subsequent section. We prove (1.26). Let h =9;v

and ve L'(Q)*, 1<r<oo. We choose a sequence {v,}5_, in W§'(Q)* such that v,
converges to v strongly in L'(Q)*. For each n, we write

(1.29) u, =(I+¢eA,) ' Pov,.
Then u, € PD(A,) and u,, satisfies
(1.30) u,—eAu,+Vp,=49;v, inQ

for some function p, € W"'(Q).
We now rewrite (1.29) as

(1.31) u, =AY (I1+¢eA,)'A;V?Pou,.
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Since A;'/?P,s; is a bounded linear operator from L'(Q)’ into X, and AY*(I +¢A,)™"
is a bounded linear operator from X, into @(AY?), {u,}>-, converges strongly in
D(AY?) to

(1.32) u=AY(I1+¢A,)"'A;V?Pop.
From (1.30), we find that u above satisfies
(1.33) u—eAu+Vp=9,v

in the sense of distribution in () for some scalar function p. Hence, u is a solution of
(1.23)-(1.25). The uniqueness of u in Wy'(Q)* follows by the duality argument and
the existence of the solution in Wy"(Q)*, 1/r'+1/r=1, when he W™ " (Q)*. Now the
proof of (1.26) is complete. a

We proceed to prove (1.27). Choose {v,}7-; and {w,}7—, in S such that v, and
w, converge to v and w, respectively, strongly in X,. It is apparent that v,;w, € We'(Q),
for j=1,2,3, where v, = (0,1, Un2, Un3), and thus, P,d;(v,w,) = P,,29;(v,w,), for j=
1,2, 3.

As above, we write for each n

(1.34) u, = ‘zl p/2(I+ EAp/z) 1Ap/2 p/26 ('D,UW ),
j=

and note that u, converges to u strongly in @(A,l,//zz), where u is the unique solution
in WyP?(Q)* of (1.23)-(1.25) with h =Z;=, 3;(vw). Rewriting (1.34) as

||
I M w

u, (I+€A,/2) ™" Ppy2d;(0njWa)

Jj=1

(1.35)

I
I M w

-

(I+ EAr)_l Praj(vnjwn)

J

A2(I+€A,) " AT Po,(0,Wn),

IIMu

1

we derive (1.27) from (1.21) and the fact that u, converges to u strongly in E’Z(A,‘,//‘;’;_).
The proof of (1.28) is very similar and we omit it.
We use a regularized version of J(-),

(1.36) J,,(v)=ZgJ (n+ Du(v))"? dx,

where 7 is a positive number and g is the yield limit. The Gateaux differential J, ()
is given by

(1.37) (Jo(v), W)=8I i (n+ Dn(v))™"?Dy(v) Dy(w) dx

Q ij=1

for each v, we V. Since J,(-) is convex, J;(-) is monotone and

(1.38) J,(0)=T,(w)z=(J(w),v—w)
for all v, we V. We also use the inequality
(1.39) "("7+DH(U))_1/2D11(U)"L «@=v2 forij=1,2,3

for every >0 and ve W"'(Q)>.
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2. Local existence and uniqueness of solutions.

DEeFINITION 2.1. A function u(x, t) is called a solution (0.1)-(0.4) on an interval
[0, T) if

(i) ue L*(0, T; V) and s,uc L*(0, T; V');
(ii) (0.1) is satisfied for every we V, for almost all te (0, T);

(iii) u(x, 0) = uy(x).

Condition (iii) makes sense since (i) implies u € C([0, T]; X,), possibly after a
modification on a set of measure zero.

This definition of solution is stronger than that of weak solution in [3] and [4].
Our main result is Theorem 2.2.

THEOREM 2.2. Suppose that 3<r<oo, uy(x)e X,, and fe L*(0, T; W "(Q)%).
Then there is a unique solution u(x, t) on an interval [0, T*), where 0 < T* = T. Further-
more, ue C([0, T*); X,) and, for each 0< 8 =3, u is D(AY>"®)-valued locally Hélder
continuous on (0, T*).

In fact, the assertion above is a consequence of Theorem 2.3.

THEOREM 2.3. Let uy(x)e€ D(AY), fe L0, T; W '(Q)*), 0=v=3/4r, and 3<
r <oo. Then, there is a unique solution u(x, t) on an interval [0, T;), where 0< T, =T,
and T, depends only on v,r, ||ug|aazy and ||flli=0.r,w-"@y). In particular, T, is
nonincreasing in ||uo|o(p*y. Furthermore,

(2.1) ue C([0, T,]; 2(A))),

and, for each 0<p <T, and each 0=a<a+B<3-3/2r+v,

(2.2) ue C((0, T,1; (A7),

(2.3) lu(sy) —u(s)|loar=M(s;—s,)? forall 0<p=s,<s5,<T,,

where M is a positive constant depending onr, p, a, B, v, |uo| a(a2y, and || f]l L=, 7. w~"" @y -

We will show that Theorem 2.3 implies Theorem 2.2. Let us fix 3 < r <00, uy(x) € X,,
and fe L*(0, T; W~ ""(Q)?). Then, by Theorem 2.3 with » =0, there is a unique solution
u on an interval [0, T,), and u satisfies (2.1)-(2.3) with » =0. Next we show that u is
PD(AY??)-valued, locally Holder continuous on (0, T,] for each 0< 8 =3. We use the
uniqueness of solution and the fact that the solution becomes more regular than the
initial datum.

Without loss of generality, let us assume 0< T, < T. Choose any 0<¢<T,;/2.
Then, ue C([¢ T,]: @(A})) with A =min(3/4r,3(3—3/2r)) and

(2.4) ”u”@(Aﬁ) =M forall te [f, Tl]

for some positive constant M.

For any se€[¢ T,], we can apply Theorem 2.3 with s as initial time, u(s) as an
initial datum, and » = A. We then obtain a solution

(2.5) v,€ C([s, s+h]; D(AN)) N C([s+7, s+h]; D(ATY)),

where h >0 can be chosen independently of s by (2.4) and 7 =min (h/2, £/2). By the
uniqueness of solutions, v, =u on [s, s+ h]. Hence we can derive that

(2.6) ue C([§+§, Tl]; @(A%*)).
If $=r, (2.6) implies
2.7 ue C(0, T\1; D(AY*)).
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If 3<r<$, we can repeat the same argument until we arrive at (2.7). Next choose any
0<8<}and 0<p<T,/2. Using t = p/2 as initial time and u(p/2) as an initial datum,
we can apply Theorem 2.3 with » =3/4r and a = max (0, 3—3/4r — 8) to conclude that
u is D(AY?"?)-valued locally Holder continuous on (0, T;]. Finally we choose

T*=sup {T: T, = T = T and there is a solution that is X,-valued continuous on [0, T1}.

By repeating the above argument, we find that u is D(AY?> ®)-valued locally
Hoélder continuous on (0, T*). This ends the proof of Theorem 2.2. i}

We outline the strategy of proof of Theorem 2.3.

Step 1. We replace J(-) by J,(-). Using the differential J, (-) and discretizing
time variable, we construct a sequence of approximate solutions that are piecewise
linear in time. The standard L’-estimates are obtained as in the case of the Navier-
Stokes equations (see [15]). With the aid of the properties of the Stokes operator in
L', we also obtain L estimates independent of n and the meshsize in time variable.

Step 2. It is shown that this sequence of approximate solutions converges to a
solution of (0.1)-(0.4) with J(-) replaced by J, () as the meshsize tends to zero.

Step 3. We pass n to zero to obtain a solution according to Definition 2.1 and
prove the uniqueness of solution.

Throughout this section, we fix 3 <r <o and use the notation

A=uA, and P=P,.

We also suppose that 0= v =3/4r, uy(x)e D(A”), and fe L*(0, T; W "(Q)*) are
given.

2.1. Construction and estimates of approximate solutions. We choose any positive
integer N and set
T
2.8 e=—.
(2.8) N
Define an approximate solution Wy by

-k
(29) Wy=—2

(U1 —u)+u, forkest=(k+1)e, k=0,1,---, N—1,

where u, is the given initial datum and u,., is determined from the equation

(2-10)(“k+1 ) ¢)+ sa(uk-l-la ¢)+ eb(uy, Ugsy, ¢)+ 8(]‘,'7(uk+1), d’) = (u, ¢)+ 3(fk+1, ‘.b)

forall ¢S, k=0,1,---, N—1, where fi,, =1/ [\ V¢ fdt, for k=0,1,--+,N—1,
and (,) denotes the duality pairing between V and V'

LEMMA 2.4. Ifu€ X, and fi.,, € W' (Q)>, then there is a unique solution u,.,, of
(2.10) in VN Wy (Q)>.

Proof. Fix any u, € X, and define a mapping A from V into its dual V’ such that
for every v, we V,

(2.11) (Av, w) = (v, w)+ea(v, w)+eb(uy, v, w)+e(J, (v), w).

Since J;(-) is monotone, it is easily seen that A is monotone. Furthermore, A is
bounded, hemicontinuous and

(Av,v)
llollv

By virtue of Theorem 2.1 of [11, p. 171], A is surjective. Since f,.., can be regarded as

(2.12) ~>00 as ||v]y->oco.
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an element of V', there is a function u,,, € V such that
(2.13) (Augsr, w) = (ug+ efisr, w) forall weV,

which implies (2.10). Uniqueness follows from the strict monotonicity of A. Equation
(2.13) implies that

3 3
(2.14) wey— Ayt Y UpjOiUp+1 — €8 ) 8j{(77"‘DII(uk+1))_1/2Dij(uk+1)}
=1 j=1

=
+Vp=u+efia

holds in the sense of distribution in ) for some scalar function p, where
e = (Uy;, U, Urs) and the fourth term is a vector function represented by its ith
component.

It remains to prove u,,,€ Wy'(Q)>. Since u,, € Ve W?(Q)?°, it follows that
U € L5(Q)?, and thus Zj-:l U0 € WO/ C*D(Q)?. This, combined with (1.39),
yields u, € W5t/ (Q)® (see [1]). If r>6, then W§*/“*"(Q)<= L¥(Q), which
implies 213.:1 U € W(Q), and hence wu, € Wy'(Q). If r=6, then
Z;zl U0+ € W2(Q)’. Consequently, w4, € Wi(Q)*, which yields Z}Ll UpjO g4 €
W 4(Q)?, for any 1=¢q<6. It now follows that u,,€ W§?(Q)>, for any 1=g<6.
Thus, u,, € L°(Q)°, which gives u,,, € W§®(Q)* by the same argument. If 3<r <6,
then Wy*/© Q)< L°/©~7(Q), and hence 2;1 Uiy € WHO/I270(Q)? which
yields ., € W5/ 1277(Q)%. By induction, we find that ., € W/ Cm=3I0(Q)3,
for each positive integer 2= m = (3r—6)/(2r —6). By repeating the same argument, we
arrive at ., € W5 (Q)>.

Next we substitute u,,, for w in (2.13) and derive

N-1

(2.15) € kZO ltesi [V =M,

(2.16) | Whllcqo,ri2@) =M,
N-1

(2.17) kz_lo s = | 220 = M,

where M denotes positive constants that are independent of n and N, and that depend
only on |[uo| 120 and || f]l 20,7, v)-

We now proceed to obtain the L™ estimates. Recalling that 0= v =3/4r, we find
that u,,€ D(A”), for k=0,1,---, N—1, since u,;€ VN Wy'(Q)*. By making use
of (1.26), (1.28), and (1.39), we can write (2.14) as

3
Uy = (I+ EA)—luk _ 8A1/2+3/2r—-2u(1+ £A)_1A_1/2_3/2r+2VP Z 8j(ukjuk+1)
j=1
3
(2.18) + 3A1/2(I + 3A)—1A¢1/2Pg 2 aj{("l + DH(“k+1))_l/2Dij(“k+1)}
j=1

o
+eA2(1+eA) ATV Pfiyy,
from which it follows that

k 3
U, = (I+£A)—ku0_£ z A1/2+3/2r~2v(I+gA)—(k—m+1)A~—1/2——3/2r+2VP z 8j(u(m—1)jum)
j=1

m=1 j=

m=

k 3
(2.19) +e zl AV (I+eA) k"D A2 pg .zl 3,{(n+ Dr(u,)) > Dy (u,n)}
i=

k
+e ¥ AVY(I+eA)" " VATVPf for k=1, -, N.

m=1
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Now we set
(2.20) E,=||A"u|x, for k=0,1,---,N.
By virtue of (1.2), (1.7), (1.20), (1.22), and (1.39), we derive from (2.19)
E.=M,+¢M, ‘Z (e(k—m+1))~ V232 E | E,
(2.21) '":1
+eM; ¥ (e(k—-m+1))""**) fork=1,---,N,

m=1

where M,’s are positive constants independent of 7, k, and N. To estimate E, from
(2.21), we observe that

k
(222) & 3 (e(k—m+1)) /22 = (gk) 22ty / (1—%”),
m=1

2 2
k 1
(2.23) e Y (e(k—m+1)) /= (sk)'/z"”/(i— v).
m=1
We may assume that
(2.24) M, =max (1, E,)
and
(2.25) 0<e<1l and 6M,M,g'/?3/2r*v <1

since we are interested only in large N.
We choose T, such that

(2.26) 0<T,=T,
(2.27) M, T /(G-v)=iM,,
1 3
(2.28) 36 M, M, T}/>73/2r*v / (5—5—+ u) =1.
r

Consequently, we find that if e=T/N<T,,

(2.29) E,=6M, for all k such that e(k—1)=T,,
from which it follows that

(2.30) A" Wi |l e o, r3:x,) = 6 M,

for all large N such that € = T/ N satisfies (2.25) and £ < T;.

Next we obtain more regular estimates on Wy. Let us fix any p suchthat 0<2p < T,
and choose any s, and s, such that p = s, <s,= T;. We then take N so large that (2.25)
holds and
(2.31) £=

=

SR

T
N
Then there are positive integers k and n such that
(2.32) ke=s,<(k+1)e,
(2.33) ne=s,<(n+1)e.
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We now choose any « and B such that

(2.34) 0<a<a+B<l—-3—+V.
2 2r
Then u,,€ D(A***), for m=1,-- -, N, since u,,€ VA Wy'(Q)*, form=1,---, N. To
estimate |A""*(Wy(s2) — Wa(sy))| x,, we treat three different cases separately.
In estimates (2.35)-(2.46), M denotes positive constants independent of 7, ¢, k,
n, s;, and s,.
Case 1. n—k=2. According to (2.19), we write

A" (u,—u) = A*((I+eA) "= (I +eA) *)A%u,

k
—£ z Aa+B+l/2+3/2r—u((I+eA)—(n—m+1)

m=1

3
—(I+eA) M ATFATV23202 D S 5 (U 1))
j=1

n

—¢ z Aa+1/2+3/2r—v
m=k+1

3
. (I+eA)—(n—m+1)A—1/2—-3/2r+2vP Z aj(u(m-—l)jum)
j=1

(2.35) .
+g Z Aa+v+1/2+B((I+sA)-—(n—m+1)

m=1

—(I+eA)"rm)A"1/2 R p

: (fm + g ‘El 3,{(77 + Dﬂ(um))_l/zDij(um)})

+e i Aa+v+1/2(1+eA)—(n—m+1)A-—1/2P

m=k+1

: (fm +g .23‘.1 8;{(n+ Dl’I(um))—l/zDij(um)}>

j=
and estimate each term on the right-hand side.

|A*((I+eA)™" — (1 —eA) ™ ) A%ug| x,
(2.36) S|A(T+eA) (T +eA) "V - A"V A% .

M
=—(e(n—k))'""*|A%u,
ek

M
x, =—(s;—s5;)'"% using (1.2) and (1.9),
p
k
€ z |lAa+B+l/2+3/2r_V(I+SA)_(k_m+l)((I+EA)_(n—k)“‘I)A_B
m=1

3
(2.37) CATVETRrvp Z] 3; (Ugm—1);m) |

Jj=

Xy

k
=M(e(n-K)° 3 e(e(k—m+1)) #2302 0E L E

m=1

using (1.2), (1.9), (1.22), and (2.20),
=M(e(n—k))P(ek)'~(xHBTV2H3/2r=0) /{1 (o + B+31+3/2r—v)}
=M(s,—5,)PT) @*BYY2H3/2r70) yi5ing (2.29),
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n 3
P z ||Aa+1/2+3/2r-v(I+EA)—(n—m+1)A—l/2—3/2r+2uP Z aj(u(m—l)jum)“X,
m=k+1 j=1

(2.38) =M Y e(e(n—-m+1))"«tv/z—vp E.

m=k+1

é M(sz_ sl)1/2—a"3/2r+v’

k
P 2 "Aa+v+l/2+B((I+£A)-—(n—m+1)__(1-+gA)—(k—m+l))A—BA—1/2P
m=1

‘ (fm+g i aj{(n+Dl'[(um))—l/zDij(um)}>|

X,
j=1
(2.39) .
=M(e(n-k))? ¥ e(e(k—m+ 1)) (atr+1/2+6)
m=1
=M(s,—5,)PTY> "B ysing (1.2), (1.9), and (1.39),
P i Aa+u+1/2(1+ SA)-(n—m+l)A—1/2P
m=k+1
3
: (fm +g Zl aj{("l +D1'I(um))_1/2Dij(um)})
Jj= X,
=M Y e(e(n—m+1)) /2
m=k
(2.40) .

= M(e(n _ k))]—(a+v+1/2)
é M(Sz_ S])]/Z—a—l/'

Combining the above estimates, we have

A" (up — we)]

M _ a—B—
x, = ;(5’2_31)1 a"‘MT{/HV «p 3/2r(s2_sl)p

(2.41) +M(sy,—sp) /27T MTY 2727 P (s, - 5,)P
+M(s,—s,) >

=M(s,—s,)P.

Similarly, we can also obtain

(2.42) ||Aa+"(un+1—uk+1)”x,§M(Sz—sl)ﬂ,

(2.43) NAS*” (s —wi) || x, = Me®.

Since s, =ke+ A€, s,=ne+Ae with0=1,<1,0=A,<1, and s,—s5,> ¢,

A (Wi (52) = Wi (51)) | x, = (1 = A) | A7 (4 = wi) || x,

(2.44) + A AT (Upay = i) | x, F 1A= M| JAST (e — i) || x,
=M(s,—s,)".
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Case 2. n=k+1. In this case, s;=(k+1)e—A,e and s,=(k+1)e+ A,¢, where
0=21,<1,0<A;=1 and s,—s,=(A,;+A,)e. Hence, (2.43) yields
||Aa+u( Wi (s,) - WN(sl))"x, = 'lAa+V((1 = A2 U1+ Aslyyr)
_Aa”()h“k“‘(l—Al)ukﬂ)"x,

= M JAST (i — i) || x, + A )| AT (o — st x,
(2.45)

1-B
~ -5
= (A +A,)Me® = Ms"»s—z-—'—si= M(s,— s,)ﬁ(sz—e—‘)

=2""PM(s,—5,)P = M(s,—5,)".

Case 3. n=k. Using 0<s,—s,;<¢ and (2.43), we have

$,—§
JA" (Wa (52) = Wi ()| x, == | A" (s — i) | x,
(2.46) gM(sfs‘)ﬁ(sz.eSI)
éM(sZ_s])B‘

On account of (2.44)-(2.46), we conclude that if e =T/N satisfies (2.25) and
(2.31), then

(2.47) ”Aa+v(WN(52)_ WN(SI))"Xr§M(Sz"‘S1)B for p§s1<S2§ Tl'
Through an analogous procedure, we can also derive
(2.48) A" Wy (s)]|

x, =M forp=s=T,.

In (2.47) and (2.48), M stands for positive constants independent of 1, €, s,, and
s,, and dependent on a, B, v, p, Ty, | A ue||x,, and || f|| L=, 7, w1y

2.2. Convergence as the time meshsize tends to zero. In this section, we prove
that the approximate solution Wy defined by (2.9) converges to a solution of
the regularized problem as N —»>00. We recall that 0= v =3/4r, uy(x)e D(A”), and
feL™0, T; W™""(Q)?%), and that T, was chosen according to (2.26)-(2.28).

LEMMA 2.5. The sequence {Wy}~N-, is precompact in C([0, T;]; D(A")).

Proof. First we fix a positive integer Ny such that T/ N, < T, and & = T/ N, satisfies
(2.25). Let t* € (0, T,] be given. Then, we can choose an integer N*= N, and a positive
number p so that 2p <t*=T, and e = T/ N = p/2, for all N = N*, By virtue of (2.48),
it is evident that {Wy(t*)}N_n+ is precompact in %(A”) and, consequently,
{Wn(t*)}N=n, is precompact in P(A”). Furthermore, it follows from (2.47) that
{Wn}N=n+ is equicontinuous at t=t* where each Wy, is regarded as a continuous
function from [0, T;] into P(A”). Thus, { Wx}R¥_n, is equicontinuous at t*. Next we
show that { Wx}X - n, is equicontinuous at ¢t = 0. Let us recall that Wy (0) = u, for every
N, and derive an analogue of (2.21) from (2.19):

A" (e = wo) | x, < I((T + £A) ™ = 1) A"ug|| ,

k
(2.49) +eM, ¥ (e(k—m+1))"V32—vEp E
1

m=

k
+eM; Y (e(k—m+1))" 2 for k=1,---, N,
m=1
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where M, and M, are the same as in (2.21). Let any {>0 be given. By assuming
N = N, and combining Lemma 1.4, (2.22), (2.23), (2.29), and (2.49), we can find a

positive number 8 depending on { and u,, but independent of 5, N, and k such that
ek = 6 implies

(2.50) ||AV(uk—u0) |Xr§§'
Using this 8, we set

o . (6686 ¢
2.51 = ece.s
(2.51) é m1n<2,27M1),

where M, is the same as in (2.29); see also (2.24).
If N=N,, N=2T/6, and 0=s =4, then (2.50) gives

(2.52) ”AV(WN(S)"uo)'x,ég-
If N=N,, N<2T/6,and 0=s=35, then e=T/N>5/2=8 and

A" (Wi (s) = uo)|

s
X, é; ”AV(“l = up)

Xy

(2.53) = ;s- TM, by (2.24) and (2.29),

={¢ by (2.51).

We now conclude that for any given ¢ > 0, there is &> 0 independent of n and N such
that

(2.54) | A" (Wn(s) = uo)|

x, ={ forall se[0, 5] and all N= Nj.

Hence, {Wn}~-n, is equicontinuous at t=0. According to the Ascoli Theorem,
{Wn}N=n, is precompact in C([0, T,]; @(A”)) and so is { Wy}~ _;. This completes
the proof of Lemma 2.5. O

We can now extract a subsequence still denoted by { Wy} such that for some
function u

(2.55) lim Wy =u

N->oo

in the norm of C([0, T,]; Z(A")).
LEMMA 2.6. The limit u in (2.55) satisfies

(2.56) ueL¥0,T; V), oueL¥0,Ty; V'),
(2.57) u(x, 0) = uo(x),
(2.58) Qu, w—u)ta(u,w—u)+b(u,u,w)+J,(w)=J,(u)=(f, w—u)

for all we V, for almost all t € (0, T,). Furthermore, it holds that for any 0<p <T, and
a, B satisfying (2.34),

(2.59) ”u(s)”@(A"‘*”)éM forpésé T],
(2.60) lu(sy) —u(s)|loa==M(s;—s,)? forp=s,<s,=T,,

where M denotes positive constants independent of , s, s,, and s,, and dependent on «,
B, v, p, Ty, lluollocary, and || fll=o,r.w 7y
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Proof. Equation (2.57) is obvious since Wy(0) =u,, for each N. By virtue of
(2.47), (2.48), and Lemma 1.1, we can use the Ascoli Theorem to obtain (2.59) and
(2.60). Next let us fix a positive integer N, such that T/ N,< T and ¢ = T/ N, satisfies
(2.25).

Then, it follows from (1.39), (2.14), (2.15), and (2.29) that for N= N, and
T/N=p<T,,

(2.61) | Wn 2 rv =M,
(2.62) 8:Wn Il 2o, vy = M,

where M denotes positive constants independent of 7, p, and N. Consequently, (2.55)
implies that for each 0<p < T,

(2.63) Wy —>u weakly in L*(p, T;: V) as N>,
(2.64) 3,Wx >0u weakly in L*(p, T; V') as N>,
and consequently,

(2.65) lull 20,750 =M,

(2.66) ol 20,7y =M,

where M stands for positive constants independent of 7.
We proceed to prove (2.58).
Let us define

(2.67) Un(t)=uy, forkest<(k+1)e, k=0,1,---,N—1,
(2.68) UX(t)=u, forkes=t<(k+1)e, k=0,1,---,N—1,
(2.69) Fn(t)=firn forkes=t<(k+1)g, k=0,1,---,N-1
Then it is proved in [15, p. 329] that as N - oo,

(2.70) Fy-f strongly in L*(0, T; V'),

(2.71) Wy —Un~=0 strongly in L*(0, T; X>).
Likewise, by using (2.17), it is easy to see that

(2.72) Wy — U% -0 strongly in L*(0, T; X,).
Furthermore, it follows from (2.15) and (2.29) that

(2.73) |Un N2, 7.vy=M for all N,

(2.74) | Wall2pr,vy=M  for all p, N such that T/N=p<T,
(2.75) | UXN =0, 1.x, =M for all N= Np,

where M stands for positive constants independent of 7, p, and N.
Consequently, (2.55) implies that as N > o0

(2.76) Uy~ u strongly in L*(0, Ty; X,),
(2.77) U%->u strongly in L*(0, T}; X5),
(2.78) Uy ->u weakly in L*(0, T;; V),
which, together with (2.73) and (2.75), give

(2.79) U%;Un > uu  weakly in L*(0, T,; L*(Q)*)

for j=1,2,3, where U% =(U%,, UX,, UX;) and u = (u,, u,, u3).



THE MOTION OF A BINGHAM FLUID 69

Next it follows from (2.10) that for each N,

T, T,

la(lJNa ¢) dt+j lb(lj’llila UNa ‘/’) dt

[

(2.80) J (0, W, ¥) dt+I

0 0
T,

TI 1
V] V]

for all ¢ € L*(0, T;; V). By making use of (1.38) and the fact that Uy € L*(0, T; V),
we infer that for each N,

T

Tl 1
J. 0:Wn, ¥—UyN) dt"'J a(Un, ¢ —Uy) dt

0 0
T,

(2.81) +J "b(U%, Un, 9) dt+j I(Jn(‘/’)"Jn(UN)) dt

0 0
T,

zj (Fn» = Uy) dt

0

for all ¢ € L*(0, T;; V). We next observe that for ke =t <(k+1)g, k=0,1,---, N—1,
1 1
(2.82) (0. Wn, Un — WN)=;(1’;(t“ks))||“k+1"“k||§(2§0,

and hence,

T, T,

Tl 1 1
J (6,Wn, Uy) dt =J (6:Wn, Wy) dt"'J (8,Wn, Uy — Wy) dt
0

0 0

Tl
(2.83) zj (0, Wn, Wy) dt
0
1 2 1 2
=5 NUI x, 75 %ol x, -
=2 IWa (T 3= ol
Accordingly, we use (2.55), (2.65), and (2.66) to deduce
Tl Tl
lim ian' (0,Wy, Uy) dt = lim infj (0,Wn, Wy) dt
N->o0 0 N->o 0
1 2 1 2
(2.84) = "u(Tl)" XZ_E "“o" X,

5
Tl

= J' (.u, u) dt.
0

By virtue of (2.78) and (2.79), we see that

Tl Tl
(2.85) lim ian. J,(Un) dtéj J,(u) dt,
N >0 0 0
Tl Tl
(2.86) lim infj a(Uy, Un) dtgj a(u, u) dt,
N->o00 0 0

T,

Tl 1
(2.87) lim j b(U%, Un, ¥) dt=J' b(u, u, ) dt for each e L*(0, T;; V).

N->o Jo 0
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Combining (2.64), (2.70), and (2.84)-(2.87), we can pass N -0 in (2.81) to arrive at

Tl TI Tl
J (0,u,  —u) dt+J a(u, y—u) dt+J b(u, u, ¢) dt
0

0 0

(2.88) +J ‘(Jn(v)—J,,(u)) dt

0

Tl
= J (f,y—u)dt
0

for every ¢ € L*(0, T; V). By the same argument as in [4], (2.88) implies (2.58). This
ends the proof of Lemma 2.6. 0

2.3. Convergence as 7 tends to zero. For each n >0, we denote by u,, the function
in Lemma 2.6 to signify its dependence on 7. We will show that u, converges to a
solution of (0.1)-(0.4) as  tends to zero. Since T; was chosen according to (2.26)-(2.28),
T, is independent of n and nonincreasing in ||uol|(a)-

LeEMMA 2.7.The set {u,},-. is precompact in C([0, T,]; D(A")).

Proof. By (2.54) and (2.55), it is easily seen that {u,(t)},-, is equicontinuous at
t = 0. Inequalities (2.59) and (2.60) imply that {u,(¢)},~, is precompact in D(A”) and
equicontinuous at each 0 <t= T,. Now we apply the Ascoli theorem to conclude the
proof. 0

Let us extract a sequence still denoted by {u,} such that for some function u,
(2.89) limu, =u

n->0

in the norm of C([0, T,]; @(A")).

LeMMA 2.8. The limit function u in (2.89) is a solution of (0.1)-(0.4) on the interval
[0, T,). Furthermore, it holds that for any 0<p < T, and a, B satisfying (2.34),

(2.90) lu(s)ga=M forp=s=T,
(2.91) ||“(32)““(51)||@(A“+”)§M(Sz_sl)B Jor p=s5,<s5,=T,,

where M denotes positive constants independent of s, s,, and s,, and dependent on a, B,
v, p, Ty, |uollacary, and || fll =1, w-1r -

Proof. Since the positive constants denoted by M in (2.59) and (2.60) are indepen-
dent of 1, we use Lemma 1.1 and the Ascoli Theorem to derive (2.90) and (2.91).
Meanwhile, (2.65), (2.66), and (2.89) yield

(2.92) u,>u weakly in L*(0, T}; V),
(2.93) du,>ou weakly in L*(0, Ty; V'),
and thus

TI Tl
lim infj J,(u,) dt=lim ian' J(u,) dt
n->0 0 n->0 0

(2.94) T
= J J(u) dt.

0

Now, by the same argument as in the proof of Lemma 2.6, we can show that u satisfies
(0.1) for every we V, for almost all ¢ (0, T;). We omit the details.
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2.4. Conclusion of the proof of Theorem 2.3. It remains to establish the uniqueness
of solution. Let u be the solution obtained in Lemma 2.8, and let # be another solution
on [0, T;) according to Definition 2.1. Then, we have

(2.95) @ (u—u),u—i)+a(u—d,u—u)=b(u, u, u)+b(d,u,u),

for almost all z€ (0, T,).
As in [11, p. 85], we have

|b(u, u, a)+b(4, 4, u)|=|b(u—1u, u—1u, u)|
= M lul|x llu— @ 3% |lu—da| V",

where 2/s+3/r=1and M is a positive constant. Since u € C([0, T;]; X,), we combine
(2.95), (2.96), and the Holder inequality to deduce
(2.97) @ (u—i),u—d)=M|u—il%,,

for almost all t€ (0, T,).

It now follows that u =4 on [0, T,].

This and Lemma 2.8 complete the proof of Theorem 2.3. 0

Finally, we remark that if T,<T, then the solution can be extended to a larger
interval by means of Theorem 2.3 itself. Let us choose

(298) T*=sup{T: T\= f:é T and there is a solution that is 92(A")-valued
continuous on [0, T]}.

Then, ue C([0, T,]; 2(A")) can be extended to ue C([0, T*); D(A”)). If T*<T,
(2.99) lim [u(t)]|ocar) = 0.

(2.96)

In this case, it is not known whether there is a solution (according to Definition 2.1)
defined on an interval [0, T**), T**> T*,

3. Global existence. Our assertion on the existence of global solution is Theorem
3.1
THEOREM 3.1. Let

6r r—(2r/p)
< —< < =
3 3 p<r and A= S

There is a positive number C such that if u,e X, and fe L™(0,00; W™""(Q)*) satisfy
(3.1) (” u0||x2+ ||f||L°°(0 00; V'))Z(I—A)(l + ||uo||x + ||f||L°°(o 003 w“-’(n)3)))L =C,

then there is a unique solution u according to Definition 2.1 on the interval [0, T), for
any 0<T<oo. Furthermore, uc C([0,);X,) and, for each 0<8=3 wu is
B (AY?*®)-valued and locally Hélder continuous on (0, ).

The idea of proof is to choose any T >0 and establish the existence of solution
u on [0, T] together with the estimate of sup,cfo,m) |#(?)| x,. Under assumption (3.1),
it will be shown that this estimate is independent of T, and hence the time interval
can be extended indefinitely with the aid of the uniqueness of solutions.

Proof. We will follow the scheme of § 2.1. Choose any T>0 and any positive
integer N. As before, we set e = T/ N. Let us write

(3.2) Gk=“uk“X2 fOl' k=0a 1" T ’Na
(3.3) 0, =ess Sug £ v
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By substituting ., for ¢ in (2.10), we can derive
(3.4) Gi,,-Gi+eC,Gr =€C,07 fork=0,1,---,N—1,

where C; and C, are positive constants dependent only on Q and w. Since we are
interested only in small &, we may assume

1
(3.5) 0<8<min(1’56—‘1>'
It then follows from (3.4) that

k
Gi=(1+€eC)*Gi+eC,0®7 ¥ (1+eC)™,
(3.6) c !
= Gjexp (—6,5k)+€2 ®3 fork=1,---,N,
1

where 8, is a positive number independent of ¢, k, and T.

We will obtain a new estimate of E, = ||u;| x,: we are considering the case v =0
in (2.20).

Recalling that 3<6r/(r+3)<p<r, we set

1 2 1
- =12 (2-)
pr
and rewrite (2.19) by using (1.27) as

k 3
e =(I+eA)  up—¢ Y AP(I+eA)"k~m+D AP 3 3 (Ugm—1)jUm)
j=1

m=1 j=

3

k
(38) +e ¥ AVA(I+sA)"“T"PATV2Pg .Zl3,~{(n+Dn(um))_”2D,~,-(um)}

m=1 j=
k

+e ¥ AVX(I+eA) ¢ VAP for k=1, -, N.
m=1

By means of (1.2), (1.20), (1.21), (1.39), and the inequality

r—(2r/p)

(3.9) |l = bkl i@ forall he L'(Q) where A = oy

we deduce
E,=C;exp (—8,ek)Ey+ C,e i—] exp(—6;e(k—m+1))
(3.10) (e(k—m+1))"*G G\, Ey_E),
+Cse il exp (=84e(k—m+1))(e(k—m+1))""*(0,+ Cy),
where @, = ess sup,= || f(¢)|| w17y, and Cis and 8;s are positive constants indepen-
dent of 0, ¢, k, T, E..s, Gl,s, O, and O,.

Let us set

(3.11) C,=C, J exp (—6,5)s % ds,

0
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(3.12) Cy=Cs Lw exp (—8,5)s /2 ds,
(3.13) Cy=max (1, C;, Cy),
(3.14) M, =max (1, E;, ©,+ Cy),
(3.15) M,=4C,M,.

We then choose { >0 such that

(3.16) CLP VMY =3,

(3.17) GV My =L

and suppose that

(3.18) Go+ (%)1/261 ={
Then, by virtue of (3.6),

(3.19) G,={ forall k=0,1,---, N.
We proceed to show by induction

(3.20) E,=M, forall k=0,---,N.

It is obvious that E,= M, and M,=4.
If E,=M,, for m=0,---, k-1, then by (3.10), (3.16), and (3.17), we have

(3.21) E =2CoM,+:M,+1E%.

If Ek§ 1, then Ekg Mz.
If E, > 1, then (3.21) yields

(3.22) 2E, =2CoM,+iM,

and hence E, = M,. This proves (3.20).

Now we can choose a proper positive constant C in (3.1), subject to the constants
above, independent of u, and f so that (3.1) guarantees (3.16)-(3.18), from which
(3.20) follows. The remainder of the proof of Theorem 3.1 can be carried out precisely
in the same manner as in the previous section, and we omit it. 0

Next we present a result on the asymptotic behavior of solutions when the external
force f is time-periodic. Our assertion is given in Theorem 3.2.

THEOREM 3.2. Suppose that fis L-periodic in time and that u, and f satisfy (3.1) and

(3.23) (ol x, + ©,)¢ (1+ || o]l x, + ©) "4 = C,

where ©,, O, are the same as above, and d, Care positive constants that will be determined
below. Then the solution u(x, t) of the theorem above converges to an L-periodic solution
as t > 0. More precisely, there is a function u,(x, t) satisfying (0.1) on (—o0, ) such that

(3.24) u, e L*(0,L; V) and 9du,eL*0,L; V"),
(3.25) u (t)=u (t+L) forallte(—c0,0),
(3.26) lu(t) = u (t)||x,= M exp (—wt) forall t=0,

where M and w are positive constants, and for each 0< 8 =3, u, is a Hélder continuous
BD(AY*®)-valued function on (—o0, 00).
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Proof. The method of proof is similar to that of Theorem 4.2 of [10]. Let u(x, t)
be the global solution obtained in Theorem 3.1. Then, by setting w =0 in (0.1), we have
1d

27
(3:27) 2dt

lull%,+a(u, u)=(f,u) for almost all te (0, ),

from which it follows that

(3.28) lull, = lluollx, exp (@i 1)+ Cyp ess sup 1A,
=

where w, and C,, are positive constants depending on Q and u. We next define

(3.29) v(x, t)=u(x, t+kL) fork=0,1,2,---.

Then, each v, satisfies (0.1) on the interval (—kL, 0) and it is easily seen that
1d ) )
EE l| o = vol| x, T Cullow — voll v = |b(vi — vo, v — o, V)]

= Cuallvoll ey lloe — voll ¥

(3.30) _
= Cusllvoll %, [l voll %,

v — voll ¥
for almost all € (0, ),

where C,;, C,,, and C,; are positive constants depending only on Q and w, and d is
a number satisfying d/2+(1—d)/r=3.
In the meantime, it follows from (3.20) that

(3.31) loo(O) )l x, = |u(t) || x, = Cia(1+ E;+0,) for all t=0,

where C,, is a positive constant indepenq‘ent of E, and ©,. By virtue of (3.28) and
(3.31), we can choose a positive number C in (3.23) so that (3.23) implies

(3.32) Cusll vO(t)”‘)i(z" vo(1)]
Hence, under conditions (3.1) and (3.23), we obtain from (3.30)

Y 4=1C, forall t=0.

d
(3.33) o |0k = voll %, + Crallve — 06] ¥ =0 for almost all te€ (0, ),

which yields
(3.34) lox = voll x, = Cis exp (—w,t) for all =0 and all k=0,
where C;5 and w, are positive constants.
Now we find that
| Oksm (8) = U ()| x, = [0k (2 + mL) — vo(t + mL) | x,

=C,sexp (—w,mL) for all t=0 and all k, m=0.

(3.35)

Consequently, {v,}%-o is a Cauchy sequence in C([0, ©); X,). Let u; be its limit. By
the same argument as in [10], u, satisfies (0.1) and (3.24)-(3.26). We omit the remaining
details.

Acknowledgment. I thank Professors K. Hannsgen and R. Wheeler for their sup-
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GLOBAL BIFURCATION OF STEADY-STATE SOLUTIONS
ON A BIOCHEMICAL SYSTEM*

CHUNQING LUt

Abstract. The differential equation u"—(u/kB*(u*+2cu+4ke?))=0 with the boundary conditions
u(0) =u(1) =1 governs the steady-state solutions from a mono-enzyme membrane model. It is proved that
for a given k>0 there are at most three solutions for all £ >0 and for all B> 0, and that there exists an
£, = £,(k), a value of ¢, at which a pitchfork bifurcation occurs in the corresponding reaction-diffusion
equations.

Key words. steady state, pitchfork, global bifurcation
AMS(MOS) subject classification. 92A09

1. Introduction. A model describing the diffusion and reaction of a substrate in
a mono-enzymatic artificial membrane was established by Thomas (see Kernevez and
Thomas [5]). The biochemical system is a membrane with the enzyme uricase linked
to a support. The substrate is uric acid, and the cosubstrate is oxygen. The substrate
and cosubstrate diffuse only within the membrane and they react in the presence of
the enzyme (they are not parts of the membrane). The stoichiometric equation is:

uricase

uric acid + oxygen ——— allantoin + other products.

Let S= S(x, t) be the concentration of the substrate of the membrane. Then it satisfies
the following reaction-diffusion equation:

1.1) S,—D,S,.+ R(S)=0,
together with boundary conditions
S=S8, atx=0 and x=L (membrane thickness),
and the given initial condition, where Dy is the coefficient of diffusion, a constant, and
R(S)= V\S/lks+S(1+S/kss)]

is the rate of the reaction where kg is the Michaelis constant, kgg the inhibition constant
of S for the enzyme, and V), is the maximal value of the reaction rate. Nondimension-
alizing the equation, we obtain the following partial differential equation:

(1.2) s;— St oF(s)=0, 0<x<1, t>0
with boundary conditions
(1.2) s(0, 1) =s(1, 1) = 5o,

and the given initial data s(x,0), where s=S/ks and F(s)=s/(1+s+ks?), and
o= (Vy/ks)(L?/ Ds), k=ks/kss, and so=So/ks are positive constants. Then the
steady-state equation associated with (1.2)-(1.2") is the two-point boundary value
problem:

(1.3) —s"+0F(s)=0, 0<x<l,
(1.3) 5(0)=s(1)=s,.

* Received by the editors April 18, 1988; accepted for publication (in revised form) February 27, 1989.
t Institute of Software, Academia Sinica, P.O. Box 8718, Beijing, People’s Republic of China.
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Kernevez [4] showed that there exist at least three solutions for (1.3)-(1.3") for large
o and for some sy. In 1976, Brauner and Nicolaenko [1] studied the stability of the
multiple steady-state solutions using the Crandall-Rabinowitz theorem for large o
based on the assumption that there are at most three solutions without a proof. In
1985, Lu [7] gave a rigorous proof: given k>0, there exists an so, = So4(k) such that
if 59> 54, then there are at most three solutions for any o > 0. Lu also indicated that
the method can also be applied to the case for large o. In this paper, Lu continues his
work of [6] and [7], and studies the global bifurcation for all s, and o >0 for given
k to prove that a pitchfork bifurcation point exists in the system.

Biologically, the results will explain that multiple stable steady states and a
hysteresis phenomenon occur in a very simple biochemical system, such as this one,
where diffusion and enzyme reaction interact, because s, is very large compared with
the membrane thickness L. Mathematically, questions about numbers and stability of
steady-state solutions of reaction-diffusion equations depend heavily upon their non-
linear terms, and there is no general way to handle them. Smoller and Wasserman [9]
studied a case in which the nonlinearity is a polynomial. Hastings and McLeod [2]
dealt with an exponential nonlinearity. In this paper, we consider a different non-
linearity from theirs—a class of rational functions.

2. Main results. We again apply the changes of variables used in [6] and [7]:
u(x)=sy's(x), B=s00""? &=2ksy) "
Then the given steady-state equation takes the form:

u

(2.1) _u”+k,32(u2+2£u+4k52)=0’ 0<x<1,
(2.1 u(0)=u(1)=1,
and the reaction-diffusion equation becomes

u du u
(2.2) 37_5;5+kﬂ2(u2+2eu+4k82)=0’ 0<x<l1, t>0,
(2.2") u(0,)=u(1,t)=1, t>0,
(2.2" u(x, 0) given.

The main results are the following three theorems.

THEOREM 1. For any given k>0, there exist at most three solutions of (2.1)-(2.1")
for all positive B and e.

THEOREM 2. For any given k> 0, there exists an €, = ¢,(k), a value of ¢, such that
for each € < ¢, there is a pair (B,, B,) depending on & and k such that (2.1)-(2.1') has
exactly three solutions for B € (B,, B,), and only one solution for € = ¢, and for any B > 0.

THEOREM 3. Suppose that €, is chosen as in Theorem 2. If € > ¢, then the unique
solution of (2.1)-(2.1") is stable to (2.2)-(2.2"); if e €(0, &) and (2.1)-(2.1') has three
solutions, then two of them are stable and the other unstable.

Remark 1. Let u(x) be any solution of (2.1)-(2.1') and u(x, t) a solution of
(2.2)-(2.2"). If for any given a >0 there exists a 8 >0 such that ||u(x, t) —u(x)| <«
for all t>0 as long as ||u(x, 0) —u(x)| <§, then u(x) is called stable to (2.2)-(2.2");
otherwise, it is unstable, where || - || is the C-norm.

Remark 2. It is observed from Theorems 2 and 3 that when the initial boundary
value problem (2.2)-(2.2") is treated as a local flow in a certain function space (cf.
[10]), €, is a bifurcation point at which a pitchfork bifurcation occurs.
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Remark 3. Because of the practical background of the equations, all parameters
appearing in the u-equations are positive. Also, we assume that all solutions studied
in the paper are positive as well. The existence of such solutions has been proved in [7].

3. Proofs of Theorems 1 and 2. We need some lemmas.
LEMMA 1. If u(x) solves (2.1)-(2.1"), then u(3)=0.
Proof. Multiply (2.1) by u’, and then integrate both sides. This yields
[u’(X)]z__LJ"(x) udu [w' )]
2 kB> )iy Uo+2eu+4dke® 2
Then u'(0)>=u'(1)% Since u>0, u">0 and u is convex. Then u'(0)=—u'(1). Let
x=3+z and v(z) =u(3+z). Then v(z) satisfies (2.1) in (—3,3) with v(—3)=0v(3) =1,
and v'(3) = —v'(—3). It is observed that w(z) = v(—z) is also a solution of (2.1) with
the same initial values as v. By the uniqueness of v(z), v(z) =v(~z), implying that
u'(3)=0.
Lemma 1 implies that the number of steady-state solutions will be determined by
the number of values of u(3), which must satisfy certain conditions. To determine such
conditions, as in [7], denote u(3)=1/y, solve u'(x) from (3.1), and integrate the

obtained equation. Then introduce the change of variable: & +u=(e+(1/y))e". It
follows that

N [° o[ (+ey)e’+(@k—1)e%y?
2 e+-— te'| 1
(5 )J ¢ [“ (1+ey)+ (4k — 1)&%y?

(1+sy)e'2—sy ds -1/2 1
-2 dt =——
&y ,[, (s+ey)2+(4k—-1)82y2] 28VEK’

where v =v(g, y)=(In (¢ + 1) —In (¢ +1/y))"/. We denote the function on the left-hand
side of (3.2), the so-called response function, by f(y; ¢). In this paper it may be written
as f or f(y) depending on the context. Thus, the number of multiple steady states will

be uniquely determined by the number of solutions of the function equation f(y; ¢) =
(2Bvk)™"'. Denote

3.1)

(3.2)

(1+ey)2e®” + (4k —1)e*y?

=Gy, 1,5) =1
G=G0, ) =t ak—1)e?)

(3.3) (1t ep)e’—ey s
“2€yj 2 2.2
1 (s+ey)’+(4k—1)e’y
and H=H(y, €)= G(y, V(y, &), €). Then (3.2) becomes
1 v,
(34) Sy, €)=2(8+—) J te" G2 dt.
Y/ Jo
Hence,
af 1+8 2 v 2 1 v , 6G
(3.5) —=—————J 1e"G ‘”d:—(w—)j "G d,
gy (L+ey)yH'? y* v] Jo ay
Ff_20+e) 1+e (ﬁ{{_(ﬁ )
oy’ (L+ey)y’HY? 2(1+ey)yH**\oy 9y li-s
4 (° » 3(1+ v, 2
(3-6) +“3j te' G"/zdt+—( ey)j te' G‘5/2<6_C_;) dt
Y- Jo 2y o ay

+Jv te'zG’3/2(£§——l+sy02—G> dt.
0 yiay y oy’
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Since af/dy and 9°f/dy* are too complicated, we introduce an auxiliary function
P=P(y; £)=(1+ey)’y((8°f/0y*) +(2/ y)(of/9y))-

For the remaining lemmas in this section, we present analytic proofs in detail
only for k=3, because the proof for general k would be very tedious, as is pointed
out in [6]. Also, the numerical results in [4] give good evidence that all properties of
the response functions f(y; £) are demonstrated by the following lemmas. In the case

e(y—2)—-1 2 ° 2 —12\2 ~—5/2
(3.7) P=——=%5—+6¢ te"(1—e ") G™* dt.
yH™" o
LEMMA 2. Function P has a unique zero in (1, ) for any e.
Proof. Ttis observed from (3.7) that P> 0fory = (2+ ¢ ') and lim,,,+ H(y:¢) =0,
and hence Lim,,;+ P(y; €)= —00. This proves the existence of zeros of P in (1, o).
To see the uniqueness, we differentiate P with respect to y once:

P 1+2¢ 3{e2(y—-1)’—(1+e)[e(y—2)—-11}
dy y H? (1+ey)y*(1+e)H?

(3.8)

308 [° .
+Zl+—£y)2 _L te" (1- e"'z)3G'7/2 dt.
Then 9P/3y >0 for ye(1,2+¢"). The conclusion of the lemma follows readily.

We now proceed with the proof of Theorem 1. We mean that a function Q(x)
has a wiggle at a critical point x = x,, or that x, is a wiggle-point of Q, if there exists
a 8> 0 such that Q'(x) <0 (Q'(x)>0) for x € (xo— 8, xo) and Q'(x)>0 (q'(x)<0) for
x € (X9, Xo+ 8). Therefore, to prove Theorem 1, we ought to show that f(y; ¢) is either
monotonic or so-called ““S-shaped,” i.e., having two wiggles. We prove this by contradic-
tion. Since f(1;e)=0 and f(y; e)>o0(y > ), f must be a function with an even
number of wiggles. Suppose that f is neither monotonic nor does it have two wiggles.
Then it must have at least four wiggles. Without loss of generality we assume that f
has exactly four wiggles. Let the leftmost wiggle-point be x, at which f takes the local
maximum and f”=0; the remaining wiggle-points in turn are x, < x; < x,. By Lemma
2, given g, there is at most one zero among f"(x;) (i=1,2,3,4). We consider two
subcases about f"(x;): (1) neither of them is zero; (2) only one is zero. If case (1)
holds, then f"(x;) <0 and P(x;) <0 for i=1,3, and f"(x;) >0 and P(x;)>0 for j=2,4,
which contradicts Lemma 2. If case (2) holds, say f"(x,) =0, then P(x,)=0. However,
the fact that f"(x,) > 0 and f"(x,) <0 implies P(x,)>0 and P(x;) <0. Again, it violates
Lemma 2. Similarly, we can prove that it is impossible for any of the f"(x;)(j =2, 3, 4)
to become zero. This means the previous assumption that f has at least four wiggles
is wrong. The proof of Theorem 1 is complete.

The remaining lemmas are concerned with the proof of Theorem 2.

LEMMA 3. There exists an go, a value of €, such that f(y; €) is a function with two
wiggles for € € (0, &,).

LemMaA 4. f(y; 0) is a function with exactly one wiggle, and takes its maximum at
Xxo=2+a, where a is a constant.

LEMMA 5. Let a be chosen as in Lemma 4. Then f'(y; €)>0 for all y>1 and for
alle=z1/a.

Lemma 3 is the main result of [6].

Proof of Lemma 4. Elementary calculations show that

(3.9) fy; 0)=7 e dt,

0



80 CHUNQING LU

1 V2 (Y,
10 (93 0) =—=—"5 “dt,
(3.10) e e I
-2 V2 2\/§r‘"y 2
, (y; 0) = - +=5 * dt.
(3.11) f'(y;0) VV2lny 422y 3 ), e’ dt

Let A=A(y)=f"(y;0)+2f"(y;0)/y. Then A<O0 for all y> 1, which means that f"<0
wherever ' =0; hence f(y;0) is a function with only one wiggle at x = x,, and takes
the global maximum at x,. Furthermore,

Viry

222 f(2;0)=1-+In2 j e dt

0

Vin2 o 42n
(3.12) =1-Jln2I Y —dt
0 On!
(In2)? (1n2)3°°[1n2]“}
>1-{ln2+—F4+"—"T2V | —=| .
! {n2 3 TN

Using In 2 < 0.7, we obtain 2v/2 In 2 f'(2; 0) > 0.09, and hence f(2; 0) > 0. Similarly, we
prove f'(e;0)<0. Therefore, the wiggle-point of f(y;0), x,=2+a for some ac€
(0, e —2). This proves the lemma.

Proof of Lemma 5. Differentiating f'(y; €) with respect to ¢ yields

o*f 2(y—1) 6¢ j” 2 CP\2 e
= te"(1—e ")*G™* dt.
sgdy (1+ey)’yH>? (1+ey)® o e’1=e™)

(3.13)

It is seen from (3.13) that given y>1, f'(y; €) increases as ¢ does. Thus f'(y; €)>0
for ye (1,2+ a] and for all £ >0, because f'(y; 0)> 0 for y € (1, 2+ a) by the preceding
lemma. If y>2+ a, then y>2+¢~", and hence P(y; £)> 0. Therefore, f'(y; €)> 0 for
y>2+ a, for otherwise f'=0 leads f">0; i.e., f would reach its minimum first on the
left, which is impossible. This proves Lemma $S.

The geometrical meaning of Theorem 2 is as follows. There exists a value of &,
£4>0 such that f(y; ¢) has exactly two wiggles for € (0, ), and that f'(y; £)=0
for e =z ¢,.. To prove this, we define two subsets M and N on the real line as follows:

(3.14) M = {e|f(y; €) with only two wiggles for all y> 1},
(3.14") N={e|e>0 and f'(y; €) <0 for some y>1}.

LEMMA 6. M is an open interval, and M = N.

Proof. We first prove M = N. It is trivial that M = N by the definition about the
wiggle-point. Take an € € N, so that f'(y’; €) <0 for some y'> 1. Since f'(y; ) > o as
y-1+ and f(y; £) > as y > o, therefore f'(y~; €)>0 and f'(y*; £) <0 for some y~
and y*, where 1 <y~ <y'<y™. This leads us to the fact that f has at least two wiggles.
Then, from the proof of Theorem 1, such ¢ € M; hence N = M. Obviously, N is open
and so is M. Also, M is nonempty and bounded from Lemmas 3 and 5. Note that the
complement of N, N ={e|f'(y; €)= 0 for all y> 1} is a continuum because £'e N
implies that (¢, 00) = N< by 8°f/d£dy > 0 from (3.13). Therefore, M is an open interval
containing (0, &), where g, is given by Lemma 3. This proves the lemma.

Now set &, =Sup M. We see from the proof of Lemma 6 that e, € N° and
f'(y; €)=0 for all e=e¢,, and that e € M and f has exactly two wiggles for ¢ <¢,. In
fact, the next lemma shows that ¢, bifurcates the numbers of the steady-state solutions.

LEMMA 7. f'(y; €) >0 for all e > €, and f'(y; €) has a unique zero y, (cf. Fig. 1).
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Proof. Take a monotonically increasing sequence {s,} n=1,2 - -suchthate, ] &,
as n->00. Let y,, <y be the two wiggle-points of f(y; &,). Then f'(y,; €,) =f (¥} €a) =
0, f"(yn; €,) =0 and f"(e5; €,) =0 for all n. Also, f'(yri1; £,) <0 and f'(yyi1; €,) <0
by 8’f/8e 9y >0.Thus[y,, y»l>[¥n+1, Yu+1]; hence there exist y; = yy such that y, 1y
and y,1yy as n-> . Since f’ and f” are continuous on any subsets of the y — ¢ plane,
[y, y"I1x[e’, "] where y', y", €', and &" are arbitrary real numbers, f'(y,; ,)~>
(g £5) and (s €)= f(V5; €4) as n—>co. Therefore f(y; &,) has zeros y, and
¥%- Next we prove the uniqueness of the zero by contradiction. Suppose that y, is the
leftmost zero of f'(y; £4), and y, the nearest zero to y,. Then f"(y,; €,) =0.If f'(y,; £4) <
0, then f'(y,; £4) =0 implies f' <0 for some y > y,; hence &, € N. This violates £, € M.
If f"(31; €4) =0, then f"(y,; £4,)>0 by Lemma 2, and hence f'<0 for some y<y,.
Again, it violates s, € M. The lemma is proved.

Since 3°f/de 3y >0, f'(y; €) >0 for all &> €4 and for all y>1. For € €(0, ¢,), let
y_(e)<y.(g) be the two wiggle-points. We set B,=[2vkf(y_; £)]™" and B,(¢)=
[2vEkf(y+; €)]7". Then the conclusions of Theorem 2 follow immediately.

4. Proof of Theorem 3. We will use the Morse Index Theorem to investigate the
eigenvalue problem. For convenience, let Q = Q(u)=oF(u), where F(u) is given in
§ 1. In this paper we use the following definition.

DEFINITION. A number A and a nontrivial function v(x) are called an eigenvalue
and an eigenfunction (corresponding to A) associated with u(x), a solution of (2.1)-
(2.1), respectively, if they satisfy the following boundary value problem:

(4.1) v"—-Qu=Av, 0<x<I1,
(4.1 v(0)=v(1)=0.

It is well known that there exists a unique positive eigenfunction on [0, 1], and
that the corresponding eigenvalue is real and simple (cf. [8]). They are called funda-
mental or principal eigenfunction and eigenvalue. In this paper we always mean such
eigenfunction and eigenvalue. Also, it is known that the parabolic partial differential
equation (2.2)-(2.2') may be treated as a local flow in a certain function space W, and
that the steady-state solution u(x) is stable for A <0, and unstable for A >0 in the
sense of Lyapunov.
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Given u(x), a solution of (2.1)-(2.1"), we introduce an operator L= (d*/dx*)—Q,
on W. Define L[v]=v"—Q,v for ve W. Then the Morse index of L on the interval
(0, 1] equals the number of positive eigenvalues associated with u(x). Therefore, u(x)
is stable when the index is zero; u(x) is unstable when the index is 1.

Remark. Suppose that w(x)e W and satisfies

4.2) L[w]=0, 0<x<l1,
(4.2 w(0)=0, w'(0) # 0.

Then the number of zeros of functions of this kind on the interval (0, 1] does not
depend on choices of w(x). We now introduce the Morse Index Theorem in this simple
case.

MoRsE INDEX THEOREM. The Morse Index of the operator L is finite and equal to
the number of zeros of any function w(x) satisfying (4.2)-(4.2") (cf. [3]).

To apply the Morse Index Theorem we construct the following functions:

u'(x) J (w2 dt, 0=x<i,
0

(4.3) w(x)=
u'(x)[A+j (u)? dt], l=x<1,
where
__2 1 Y2 u'(3) —u'(1) ]
“4 A‘u%a[wwfﬂL wor 4

It can be proved that w(x) given by (4.3) is a C? function and satisfies (4.2)-(4.2').
All we need is to compute their zeros for different cases of u(x).

LeEMMA 8. The number of zeros on (0, 1] of w(x) given by (4.3) is at most one. It
is zero for A<O0, and one for A>0.

LEMMA 9. Suppose that u(x) solves (2.1)-(2.1') and u(3) =1/y. If f'(y; €) #0, then
u(x) is nondegenerate, i.e., the eigenvalue of the operator L is nonzero. Furthermore, if
f'(y; €)>0, then u(x) is stable; if f'(y; €) <0, then u(x) is unstable.

Proof of Lemma 8. Since the solutions of (2.1)-(2.1') we studied are positive,
u"(x)>0; hence u’(x) <0 in [0,3) and u'(x)>0 in (3, 1]. We observe from (4.3) that
if A<0, then w(x) <0 for all x € (0, 1], and that if A> 0, then w(1) = Au’'(1) > 0 implies
that w(x) has at least one zero on (3,1]. On the other hand, since the function
{A+[] [w'(¢)]7* dt} is monotonically increasing and u’> 0 for x € (3, 1], w(x) has at
most one zero on (3, 1]. This proves the lemma.

Proof of Lemma 9. For simplicity, let M(u) = | Q(u) du. Then the response func-
tion f(y; £) becomes

1 (! du
*5) f“””ﬁL~ﬁWﬂﬁWﬁﬁ
Denote u(3) =7 (=1/y) and T(n)=Bf(1/7; £). Then

1= ds
“o o=, ey
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) = — 1 B j M'(u)— M'(n)
M TUMM-M(n) ), 2AVMw) - M(n)T’

Al [ w-wd) ]
(4.7) \/il: u'(1) J;/z [w' (01 “

LT [ - ]
‘ﬁ[u'«»*L wor )

because u”= Q(u) and u>=2[M(u)— M(n)]. It turns out from (4.4) that

_V2T'(n) __V2Bf(y;¢)

w'() W@y
We have checked that L{w]=0and L[u'] =0, and that u’ and w are linearly independent
on (0, 1). Therefore, the general solution of the second-order differential equation
L[z]=0 can be expressed by z=c,u'+ c,w, where ¢, and ¢, are arbitrary constants.
Suppose that Y(0)=Y(1)=0 and L[Y]=0. Then Y=0 on [0, 1] by the uniqueness
of the solution of L[{z] =0, which implies that the eigenvalue of L is nonzero. If f'>0,
then A <0 by (4.8), and the Morse Index is zero by Lemma 8. Hence, by the Morse
Index Theorem, the eigenvalue of L is negative. Therefore, u(x) is stable. Similarly,
if f'<0, then u(x) is unstable.

The proof of Theorem 2 has already shown that (i) if € > ¢, then f'(y; £€) >0 for
all y=1 and hence the unique steady-state solution is stable; (ii) if 0<e <e, and
B € (B, B,), then there are three solutions u,, u,, and u; of (2.1)-(2.1'). Let u;(3) =1/y;
(i=1,2,3); hence f'(y;;€)>0 for j=1,3 and f'(y,; €) <0. By Lemma 9, we prove
Theorem 3 immediately.

We can apply the Conley Index Theory to get more information about the global
structure of the multiple steady states. It is seen that the Conley Index of u,, h(u,) =3!,
is a pointed circle, and the Conley Index of u;, h(u;) =3° is a pointed zero sphere
(j=1,3). Then there exist solutions v, and v, of (2.2)-(2.2) connecting u, to u, and
u, to u;, respectively [10, Thm. 22.33], namely, v,(x, t) > u,(x) and v,(x, t)-> u5(x) as
t—>00, v,(x, t) > uy(x) and v,(x, t) > u,(x) as t > —oo uniformly on [0, 1]. Suppose that
u(x, t) solves (2.2)-(2.2") with u,(x, 0) = u,(x). We claim that if u,(x) < u,(x) <u,(x)
for x€ (0, 1), then u, lies in the stable manifold of u,, i.e., u,(x, t) > u,(x) as t >0,
while if u;(x) <u,(x) <u,(x) for x€(0, 1), then u, lies in the stable manifold of u,.
To see this, suppose, for example, that u,(x)> u,(x)>u,(x) for xe€(0,1). Then
u;(x) > uy(x, to) > uy(x) for some #,>0 and x € (0, 1), and it follows that du, (0, t,)/dx <
0 (because uy(x, t) <u; <1 and u,(0, t,) =1), and du,(1, t,)/dx > 0. Thus if v, is the
solution connecting u, to u,, then by the fact that v,(x, t) > u, as t > —o0 uniformly
on [0, 1] we see that v,(x, to—t;) < u(x, t,) for some #,>0. Let w(x, t)=v,(x, t—1,).
Then w(0, t) = w(1, t) =1 and w(x, t,) < uy(x, t,). By the comparison theorem we obtain
w(x, t) <u,(x, t) for all t=t, and for x € (0, 1). Meanwhile, w(x, t) - u,(x) uniformly
as t->00, so that the same is true for u,(x, t); in other words, u, lies in the stable
manifold of u,. In the same way, we can prove that if u; <u, <u,, then u, lies in the
stable manifold of u;.

We can also investigate the stability using the maximum principle to prove that
the region of attraction of u, includes all initial distributions v(x, 0) satisfying u,(x) <
v(x, 0) =1, while that of u; includes all v(x, 0) satisfying u(x) = v(x, 0) < u,(x), where
u(x) = (cosh (x —3)/2kBe)/(cosh (1/4kBe) is a lower solution of (2.1) (cf. [7]). This
is illustrated in Fig. 2.

du

(4.8) A
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SINGULAR LIMIT ANALYSIS OF STABILITY OF TRAVELING WAVE
SOLUTIONS IN BISTABLE REACTION-DIFFUSION SYSTEMS*

Y. NISHIURAY, M. MIMURATY, H. IKEDA%, AND H. FUJII§

Abstract. The stability properties of the traveling front solutions to bistable reaction-diftusion systems
in which there are big differences in both the diffusion rates and the reaction rates between two species are
studied. In contrast to the scalar case, this bistable system has multiple existence of traveling waves in the
appropriate region of parameters. Each wave can be constructed by using a singular perturbation method,
and its stability or instability is determined by a simple algebraic quantity appearing in its construction:
namely, the sign of the Jacobian of inner and outer matching conditions. The singular limit approach (which
is quite different from formal limiting arguments) adopted in this paper is rigorous and very useful in the
study of stability problems of singularly perturbed solutions.

Key words. stability, traveling wave, singular perturbation, reaction-diffusion system

AMS(MOS) subject classifications. 35B25, 35B40, 35K57

1. Introduction. Bistable media are one of the basic machineries that create a
variety of propagating patterns. Especially, traveling front waves describing the transi-
tion from one stable state to the other are the most essential and interesting ones for
such media. For a two-component model system, we meet the following equations:

etu, = e’u,, +f(u, v),
(P)... (t,z) € (0, 0) X R.

v =v,,+g(u,v),
Here ¢ and 7 are real parameters, where &7 and ¢/7 are, respectively, the ratios of
the rates of reaction and diffusion of the quantities ¥ and v. Suppose that ¢ is sufficiently
small. When 7 is of the order &, the diffusion rates of u and v are of the same order,
but u reacts much faster than v. On the other hand, when 7 is of order 1/¢, u reacts
with the same order as v, although there is a big difference between the diffusion rates
of u and v. The qualitative information about f and g is depicted in Fig. 1: f is a
cubic-like function, and g =0 intersects with f =0 at three points E. and E,.

Note that E. and E_ are stable constant solutions of (P), . It is natural to expect
the existence of traveling fronts connecting E_to E, . For such an existence problem,
we know at least numerically that, when 7= O(¢), there occurs a multiple existence
of traveling front solutions. On the other hand, when 7= O(1/¢), there is one solution
[9] that is proved to be stable in [11]. We can imagine from this that a certain transition
process might happen to the structure of solutions when 7 varies between two extreme
values. In fact, Ikeda, Mimura, and Nishiura [10] have recently studied the case
7=0(1), where there are differences in both reaction and diffusion rates between u
and v, namely, u reacts much faster than v but diffuses much slower than v. It is
noteworthy that the number of traveling fronts connecting E_ to E, depends crucially
on the parameter 7. More precisely, on the one hand, there exists a unique traveling
front solution for large = and, on the other hand, there exist at least three solutions
for small 7. In fact, when f and g are specified, respectively, as

(1.1) fu,v)=u(l—u)(u—a)—v and g(u,v)=u—1yv
with constants a and v, Fig. 2 shows a typical situation of the dependency of traveling
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f(u,v) =0
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F1G. 1. Functional forms of f=0 and g =0.
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F1G. 2. Global bifurcation diagram of traveling front solutions in (7, c)-plane, where s (respectively, u)
represents the stable (respectively, unstable) branch.
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front solutions on 7. This contrasts with the scalar reaction-diffusion equation of bistable
type (see, e.g., Fife and McLeod [6]) where the front solution is always unique and
stable. Multiple existence of traveling front solutions is also shown by Rinzel and
Terman [16] for the bistable FitzHugh-Nagumo system with piecewise nonlinearity.

The aim of this paper is twofold concerning the stability properties of traveling
front solutions of (P). . when ¢ is sufficiently small and 7= O(1). First, we clarify the
stability properties of the front solutions by using the Singular Limit Eigenvalue
Problem (SLEP) method originated in [13] (see Theorems 3.1 and 3.2). Second, in
Theorem 4.1 we give an alternative form of the stability criterion of Theorems 3.1 and
3.2, which essentially stems from the geometrical nature of the construction of singular
limit traveling front solutions in § 2. Loosely speaking, our results can be summarized
as follows.

MaAIN THEOREM. The linearized eigenvalue problem at a traveling front solution
has a unique real simple eigenvalue besides the translation free zero eigenvalue and the
rest of the spectrum lies strictly inside of the left halfplane independently of the parameters
€ and 7. This critical eigenvalue is obtained as a zero of a scalar equation called the SLEP
equation (see (3.68) and (3.69)), and its sign determines the stability of the traveling
front, namely, positive (respectively, negative) means unstable (respectively, asymptotically
stable in the orbital sense). Moreover, the sign of the critical eigenvalue is equal to that
of the Jacobian of the C'-matching conditions for outer and inner solutions of a singularly
perturbed traveling front wave (see (2.16) and (4.25)).

The last statement is close to the spirit of Evans’ works [3], [4], which relate the
stability of nerve pulse to the intersecting manner of stable and unstable manifolds.
This geometrical interpretation of the stability criterion is very useful in a practical
sense. Namely, when we construct a lowest-order approximation to a traveling front
solution as £}0, we can judge its stability simultaneously. In fact, by looking at the
schematic diagram Fig. 2, we can say from the construction of each solution that,
except for the limit point, the upper and the lower branch are stable, while the middle
one is unstable. This is quite reasonable from a bifurcation point of view. The details
will be shown in § 4.

The idea of the SLEP method is to derive a limiting linearized eigenvalue problem
as ¢ 0 without losing information coming from the transition layer. It turns out that
a Dirac point mass (in the one-dimensional case) appears in the limit of €0 after an
appropriate scaling, and the coefficient of it is determined by the global geometrical
quantities of f and g. After some computation, the whole problem is reduced to solving
a transcendental equation, or more geometrically, to finding intersection points of a
straight line and a convex curve, which tells us the limiting location of dangerous
eigenvalues to the stability (see (3.69)). See [12]-[15] for the details of the SLEP
method and its applications.

What we would like to emphasize in this paper is that the singular limit analysis
as £ 0 (which is essentially different from & =0) sheds light on the world of £> 0.

Finally, Jones and Gardner [17] have notified us that a topological approach may
work to solve the same stability problem as above.

We impose the following assumptions on the nonlinearities of f and g (see Fig. 1).

(A0) f and g are smooth functions of u and v on some open set Q in R*.

(A1) f=0is S-shaped and consists of three branches u = h_(v), ho(v), and h (v)
(h_(v) = ho(v) = h(v)), while g =0 intersects once with each branch at E_=
(u-,v.), Eo, and E, = (u,, v,) (v_<wv,), respectively, as in Fig. 1. The signs
of f and g are both negative in the upper region of the curves f=0and g =0.
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(A2) J(v) EI',:jEﬁ;f(u, v) du has a unique isolated zero at v™* € (Vmin, Umax)-
(A3)  fu(hi(v),v)<0 forvel[v_,v,],

g(h_(v),v)<0<g(h.(v),v) forve(v_,v,),

g,(h.(v),v)<0 forv=v,,

a(f, 8)
a( , )

(A4) folu,v)<0 for (u,v)e{(y, v)|h_(v)=Su=h,(v),v_Sv=v.},
g.(u,v)>0 at (u,v)=(u.,vs).

Remark 1.1. The assumption for the sign of (3(f, g)/d(u, v))(h.(v), v) is equivalent

—=>=~(hy(v),v)>0 forvelv_,v,].

to

d .
:i—'l; g(hﬂ:(v), U) <0 for vE [U_, v+]’

since, from f(h.(v), v) =0,

Ju8o — fo8u

2o ghu(o), 0) LE

(u,0)=(h.(v),v)
holds.

Throughout this paper, we will use the following function spaces and notation.
Let I=R_, R, or R, p, and o be positive numbers, and let n be a nonnegative integer;

Xz,ams{ue c(1) (o d—‘i)iu(x) <oo},

Cyni(I)={u|u is bounded and uniformly continuous on I},
1/2
o} <)

umf(I)_ umf(I)xcumf(I)’
e”""( )u(x)

n
falwzr={ $ j
i=0J1

where H"(I) is the usual Sobolev space on I
L(I)= HY(D),
(H})*(I)=the dual space of H,(I),
(+,*y; L? inner product. (-, -), is also used to specify the independent variable;
C.={reC|ReA>—pu,neR},

o.(Z) identically equals the set of the essential spectrum of the operator £; C¢, (I)
identically equals the uniform convergence on any compact subset of I in C"(I)-sense.

lull g = 3 sup

i=0 xel

Hi(I)= {ue H"(I)

2. Construction of traveling front solutions. In this section we will summarize the
existence results of traveling front solutions studied in the previous paper [10]. Introduc-

ing the traveling coordinate x = z + ct, we find that traveling front solutions with velocity
¢ satisfy

eu,, — ectu, + f(u, v) =0,

(2.1) xeR
Uxx “C’Dx+g(u, U) =0:

with boundary conditions

2.2) u(£0)=u,, v(£0) =v,.
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To avoid the phase ambiguity, we impose the following condition on u(x):

(2.3) u(0)=a
where « is an arbitrarily fixed value in some interval (see § 2.2). Moreover, we put
(2.4) v(0)=8

for B € (v_, v,), which will be determined later.

We divide the whole interval R into two subintervals R_ and R, . First, fix ¢ and
B arbitrarily, and look for solutions (u., v.) of the following boundary value problem
on each subinterval R. with the aid of outer and inner approximations:

e (us)xx = £CT(us)x +f(Us, v.) =0,
(Vi) x — C(Ui)x +g(u:l:, Ui) =0,
(2.5). xeR,,
U (£0) =u,, u:t(O) =a,
v.(£0) =10, v.(0)=B.

Second, we derive two relations between ¢ and B8 through C'-matching of the outer
and inner solutions of (2.5).. at x =0, respectively, and construct singular limit solutions
by taking the intersection of these two relations. Finally, using a singular limit solution,
we obtain a solution (u, v) of (2.1), (2.2) for some ¢ = c(¢) (see Fig. 3).

2.1. Outer solutions. Fig. 3 shows that the derivatives of u.(x) are moderate in
the region away from a layer position. Therefore, the solutions of the following limiting
equations of (2.5). as £ 0 could become good approximations there:

Slus, v.)=0,
(2.6). (V1) xx — €(V2) +g(u.,v.)=0, xeR,,

v.(£0)=0v,, v.(0) = B.

c(e) &

~~~~~ (UgsVy)

(u(x;e,t) ,v(x;e,1))

F1G. 3. The profile of a traveling front solution (u(x; €, 7), v(x; ¢, 7)) and its outer solution (U,, V,).
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As particular solutions of the first equation, we take u, = h.(v.) (see (Al)). Substituting
this into the second equation, we see that (2.6).. is reduced to

(V:l:)xx—c( V:l:)x+g(h:l:( V:l:)’ V:t)::oa xeR,,
Vi(z0)=v.,  V.(0)=8

LeEmMmA 2.1. Forany fixed ce Rand B € (v_, v,), there exist unique strictly monotone
increasing solutions V5(x; ¢, B) of (2.7). satisfying

|Va(x; ¢, B) —val € X2 (ya(RL)

where u(c)=min{u_(c), u:(c)} and u.(c) are positive roots of wi—cu.+
(d/dv)g(h.(v.), v.) =0. Moreover, Vi(x; c, B) are continuous with respect to (c, B) €
Rx (v_,v,) in the Xi(c)’l(Ri)-topology and satisfy

(2.7)+

a[d _ d .
(28) a_cl:'d-'x'VO(O,CsB)—:i;VO(O,C’B)]>0
and

a[d d .
(2.9) £ [E.x- VO(O, (63 B)_ij VO(Oa (4) B)] >0.

LEMMA 2.2. (outer matching condition). For any fixed c € R, there uniquely exists
B =Bo(c) e C'(R) satisfying

d d
2 Vo056 Bo()) 7 V5 (05 ¢, Bo(c)) =0,

which is a strictly monotone decreasing function of c € R and converges to v, as ¢ > Fo0,
respectively. Moreover, for v* e (v_, v,),

I(v*)Z0 if and only if Bo(0) = v*

where 1(8) = [7_g(h_(v), v) dv+; g(h.(v), v) dv.
We define Ug(x; ¢, B) by

U(:;:(x;caﬂ)=h:i:(v(j):(x; caB))s xeR;«:-
We denote the C'-matching outer solution on the whole line by

) Vo(x;5¢Bo(c)),  xeR.,
(2.10), Vo(x; €)= { Vit o Bcl), %eR.
and

o Bh(Vo(x; ¢, Bo(c))),  xeR_,
(2.10), Uy(x; ¢)= {h+( V:,“(x; ¢, Bo(0))), xR,
(see Fig. 3.)

2.2. Inner solutions. Since the outer solutions Ugj(x;c, B) do not satisfy the
boundary condition at x =0, we must remedy them in a neighborhood of x =0. For
this purpose, it is convenient to introduce the stretched variable y = x/e. Substituting
(Us+ W5, V5) into (2.5). with remedy terms Wi (y), and putting £ =0, we obtain
the following problems for Wy:

(W3),y —er(W5), +f(h(B)+ W5,B)=0,  yeR.,
(2.11). W(:)t(o) =a—h.(B),
Wa(£0) =0
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where B and a are arbitrarily fixed constants satisfying Be(v_,v,) and @€
(h_(B), h.(B)). That is, the inner transition layer is stretched on the whole line and
connects h_(B) to h.(B).

Lemma 2.3 (Fife and McLeod [6]). Forany fixed B € [v_, v.], consider the following
problem:

Wyy_c“/y"'f("vaﬂ):O, )’ER,
W(to)=h.(B), W(0)=a

Then there exists ¢ = co(B) such that (2.12) has a unique strictly monotone increasing
solution W(y; co(B), B) satisfying

|W(y; co(B); B)—h.(B)|e Xg'x(ﬁ),l(R:t)

(2.12)

where

o.(B) =[Fco(B) +V(co(B))* — 4f.(h(B), B)]/2
and
¢(B)S0 if and only if J(B)S0.

It is almost clear from Lemma 2.3 that the derivatives of W§ and W, are matched
at x =0 if and only if ¢ is equal to co(B)/ 7.
LemMMA 2.4 (inner matching condition). For any fixed Be[v_, v,], let

(2.13) ci(B; )= co(B)/ 7.

Then  there  exists 8>0 such that for any fixed (¢, ,B)GASO—

{(& B)|1E-cr(B; 1-)|+|B B|=68,}, (2.11). have unique strictly monotone increasing
solutions W5 (y; 7, ¢, B) satisfying

|Wa(y; 7, & B)—ho(B) e X2, (11(R.)
where o .(7) =inf(ag)e,\50 o.(m; ¢ ﬁ) with
o.(7; ¢, B)=[Fer+/(cr)?—4f.(h.(B), B)1/2.

Furthermore, W(T(J’; T, ¢, ,é) are continuous with respect to (c‘,'é‘)e/\s0 in the
X2 (.1(R.)-topology and

(2.14) diwo(o 7 /(s 1), B) iwo(o 7 ¢ (B; 1), B) =0,
(215, a"c[d Wa(0; 7, ¢;(85 ), B) — —Wo<o i (B; 7), B)]>0

(2.15), % [d—dy Wo (05 7, ¢/(B; r),m—d—‘i W (05 7, ¢/(B; r),,B)] >0.
Remark 2.1. It follows from (2.14) and (2.15) that (d/dB)c;(B, 7)(=(1/7) %
(d/dB)cy(B)) is strictly negative for B e[v_, v,]. Therefore there exists an inverse
function of (2.13), say B =8,(c; 7), that is strictly decreasing for ce (¢;(v4; 7),
c(v_; 7).
Remark 2.2. The definition domain for 8 can be extended to (Vpin, Umax) in Lemma
2.4, since Lemma 2.3 holds for 8 € (Umin, Umax)-

2.3. Singular limit traveling front solutioms. It is clear that the lowest-order
approximations (Ug(x; ¢, B)+ Wi(x; 7, ¢, B), Vo(x; ¢, B)) of (2.5). are matched at
x =0 in the C°sense. To construct an exact solution for small positive £ on the whole
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line R, the singular perturbation method requests C'-continuity of these approximations
so that their derivatives must be matched at x =0 in the C°-sense. Thus, we impose
the following conditions on (Wj, V3):

q)O(T,C,B)E d W(;(Oy ’T,C,B)— d ”0(0; T,caﬁ)=07
dy dy
(2.16)

d d
Wo(c, B)E‘—i; Vo (0; ¢, B = V5(0; ¢, B)=0.

It turns out from Lemmas 2.2 and 2.4 that the above relations are equivalent to the
conditions:

(2.17) B = Bo(c)
and

(2.18) c=co(B)/ .
From Remark 2.1, the latter is equivalent to
(2.19) B =B:(c; 7).

Note that both 8, and B; are C'-functions and strictly decreasing as in Fig. 4 (see
also Remark 2.2). Geometrically, the solution set for (2.16) is represented by the
intersection points of two curves 8 = B¢(c) and B =B,;(c; 7).

For any given 7> 0, let (c*, 8*) be an arbitrary intersection point of (2.17) and
(2.19). Define (uy(x; ¢, 7), vo(x; €, 7)) by

(2.20), uy(x; &, 7) = i
U (x; ¢*, B*)+ Wb*(—; 7, ¥, B*), xeR,
E

and

Vo(x;c*, B*), xeR_,

2.20 : =
(220 wolx; 1) {V‘J(x;c*,ﬁ*), xeR,.

We call (uo(x; &, 7), vo(x; €, 7)) a singular limit traveling front solution of (2.1)-(2.3)
with the singular limit velocity c*.

The following theorem shows that the number of the singular limit traveling front
solutions varies depending on 7 and the location of v* (see (A2)).

THEOREM 2.1. Suppose that (A0)-(A4) hold. When v* e (v_, vy), (2.1)-(2.3) has
three singular limit traveling front solutions for small T and has only one for large 7. (See

Fig. 2.) On the other hand, when v™* € (Ui, Umax)\(V_, vy), it has only one for both small
and large .

2.4. Traveling front solutions for £ >0. Using a singular limit traveling front
solution as an approximation, we can construct the exact solution of (2.1)-(2.3) with
the aid of the standard singular perturbation method. Let (c*, 8*) be an arbitrary
intersection point of (2.17) and (2.19), and assume that

3(q)0,\1'0) * *
(2.21) e B) #0 at(c*, B%),
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)
(, v*);;
B=8(c;7)

N
SRR PRSI NG _

(a) 7:large

B

B=8B,(c; 1)

(0, v™)

(b) 7:small

FIG. 4. The graphs of outer and inner matching conditions and their intersections. For large 7 they have
a unique intersection, but for small 7 they have three intersecting points.
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which is equivalent to the following:

(2.22) The two curves of C'-matching conditions 8 = B,(c) and B = B,(c; 7)
intersect with each other transversally at (c*, B*).

First we fix 7, ¢, and B and construct exact solutions of (2.5). on each subinterval
R. for sufficiently small &, which we denote by (u*(x; &, 7, ¢, B), v™(x; &, 7, ¢, B)) (see
Lemma 3.2 of [10]), and then match these solutions at x =0 in C'-sense. For this
purpose, we define two functions ® and ¥ as follows:

=L w0 L o
¢(8’Tscaﬂ)_8dxu (O’ g T, C’B) sdxu (0, £, T,caB)a
(2.23)

d d
Ve, 0 B)=— v (0567,68) 0" (067,68,

and determine ¢ and B as functions of & such that
(2.24) @(e, 7,¢,8)=0=Y¥(e, 7,¢,B)

hold. Noting that ®, ¥, and their first derivatives with respect to ¢ and B are uniformly
continuous for £ >0, we can extend them continuously up to £ =0. Letting £ =0, (2.23)
is reduced to (2.16), i.e.,

(2'25) (I)(O, 7, C, B)zq)O(T, (68 B), \P(O, 7, C, B)=1I’0(C, B)'

As before, for any fixed 7> 0, let (c*, B*) be an arbitrary solution of (2.25). Recalling
the nondegenerate condition (2.21), we easily see that

(P, V)

holds at (g, 7, ¢, B) = (0, 7, c*, B*). Thus we can apply the Implicit Function Theorem
to (2.24). That is, there is £,> 0 such that there exist continuous functions c(&; 7) and
B(e; 7) satisfying (2.24) for € €[0, &) and lim, |, c(e; 7) = ¢* and lim, |, B(e; 7) = B*.
We have reached the goal.

THEOREM 2.2. Suppose that (A0)-(A4) hold and that, for a given >0, the curves
(2.17) and (2.19) intersect transversally at (c*, B*). Then, for any e € (0, &,) there exists
a traveling front solution (u(x; &, 7), v(x; €, 7)) € X3 .(R) X X2 ,(R) of the problem (2.1)-
(2.3), satisfying

(2.26) #0

lu(-s e 7)—uo(-s e, 7')" x!.)T lo(-5 e 7)— 0o+ &, T)“X,‘,’I(R)")O

as € 0. Furthermore, the velocity c(e; 7) converges to the singular velocity c¢* as 0.

We simply denote this solution by U° = (u®, v°).

CoROLLARY 2.1. Suppose that (A0)-(A4) hold and fix e to be sufficiently small.
When v*e (v_, vy), (2.1)-(2.3) has three traveling front solutions for small T and has
only one for large . On the other hand, when v* € (Vmin, Vmax)\(v_, v.), it has only one
for both small and large .

Let us specify f and g as (1.1). Then the solution structure is revealed for all 7
as in Fig. 2.

Finally, we show the asymptotic behavior of the stretched traveling front solutions
of Theorem 2.2 on any compact interval as €0, which plays an important role in the
next section.



STABILITY OF TRAVELING FRONT SOLUTIONS 95

LemMma 2.5. Let (u®, v°)=(u(x; e, 7),v(x; e 7)) be a traveling front solution
obtained in Theorem 2.2, and let (i°, 0°) be the stretched solution of (u°, v°), namely,
(a°, 0°)=(u(ey; ¢, 1), v(ey; €, 7). Then we have

(2.27) lim (%, 5°) = (W(y; co(B*), B*), B*) in C2,(R)-sense

where W(y; co(B*), B*) is the unique monotone increasing solution of (2.12).

Proof. By using (2.20) and Theorem 2.2, we can easily show (2.27). So we leave
the details to the reader. See also Lemma 1.1 of [13].

Remark 2.3. Note that (2.27) contains the following result:

d d
lj{g;}j ur % W(y; co(B*), B*) in C.,.(R)-sense.
The following result is a direct consequence of Lemma 2.5.

CoROLLARY 2.2. Let F(u, v) be a smooth function of u and v. Then, the composite
Sfunction F(ud°, 0%) satisfies

lim F(i", v%) = F(W(y; co(B*), B*), B*) in CZ, (R)-sense.

We close this section by presenting a lemma on the embedding properties of the
Hilbert space H,(R).

LEMMA 2.6. The Hilbert space H}(R) (p > 0) satisfies the following properties:

(i) H,(R) is continuously embedded in C,,(R).

(ii) A bounded set in H)(R) (p>0) is precompact in L2.(R) for 0<p'<p.

Proof. Taking an expanding sequence of compact intervals that converges to the
whole line, and applying the diagonal arguments with the Sobolev Embedding Theorem
on a compact interval, we can prove two claims without difficulty by virtue of the
exponential weight function in the definition of H,(R).

3. Criterion for the stability of traveling front solutions. In this section, we will
study the stability of the traveling fronts obtained in the previous section. If we consider
the linearized equations of (P). . around the specified traveling front solutions, the
spectrum of the resulting linearized problem consists of two parts; the essential spectrum
and isolated eigenvalues. It is proved later that the former one is not dangerous (see
Proposition 3.1) but the latter one is crucial to the stability (see Lemma 3.9 and Theorem
3.2). In § 3.3 we clarify the limiting location of the real isolated eigenvalues as €0,
which varies depending on the parameter 7. Finally, we show in § 3.4 that the limiting
analysis in § 3.3 is valid for small but positive &.

3.1. Linearized problem and preliminaries. Let us take an arbitrary traveling front
solution U° = (u°, v°) of (2.1)-(2.3). Recall that when 7 is arbitrarily fixed, the velocity
c is determined as a function of ¢ with the singular limit velocity ¢* =1lim, 4 c(¢). The
original evolutional system (P)., takes the following form after using the traveling
coordinate x =z +c(¢e)t and shifting the origin to %°:

A er 0\ 9 12 ﬁ
9 = & + A A
(P)e.s ( 0 1) o (5) £ (5) H(d, 9)

where
@\ (u u® . (L fs
(ﬁ)~(v) (v) + “(gi Me)
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with
d? d d? d
e .2 7 - £ e —+0f
L°=e¢ i 0(8)8de+fu, M i C(e)dx gs>
and
b, 0y= (100 D000 - fid-138)
g(u,v)—g(u’,v°)—gri—gid

Here f;,f,, g.,and g; denote, respectively, the partial derivatives of f and g evaluated
at %U°. The corresponding linearized eigenvalue problem is given by

. ()=[0 5] ()(F 00

The underlying space for (13) e- and (LP), ., can be taken as X, = C,,;(R) with
(3.1) D(Z°)={U=(w, 2)'|U, U, U €X,}.

Using the standard arguments, we can show that #° becomes a sectorial operator (see,
for example, Henry [8]) and the spectral distribution of ¥° determines the nonlinear
stability (or instability) in X{-topology, where X7 denotes the Banach space associated
with the fractional power of £°, namely,

(3.2) X{=D({(—=Z°+«I)*)

for an appropriate positive constant k and « €[0,1) with the usual graph norm.
Although the choice of the underlying space might be a problem of taste depending
on the phenomena described by the model systems, C,,.;/(R) seems to have a natural
topology for reaction-diffusion systems. Another choice is, for example, L*(R);
however, in this case, the initial perturbation must satisfy some sort of decaying property
at infinity. Nevertheless, it should be noted that there are no essential differences
among underlying spaces as far as the discrete spectrum of (LP). , is concerned, since
the associated eigenfunctions decay exponentially as |x| > c0. Taking this advantage,
we will look for the eigenfunctions in H,(R) (cL*(R)) instead of C,,«{R), which is
more convenient for our purposes. In view of (LP), ., we see that it becomes highly
degenerated as €| 0: the highest order of L® vanishes, and each coefficient in £° has
a discontinuous point at the layer position in this limit. Therefore, it is not clear in
advance what kind of singular behaviors and degeneracies will occur for eigenvalues
as well as eigenfunctions in the limit of £ 0. As we will see in § 3.3, the SLEP method
is very useful in solving these problems, and it has worked nicely in various other
problems (see Nishiura and Fujii [13], [14], Nishiura [12], and Nishiura and Mimura
[15D).

In the remaining part of this section, we will present several preliminaries used
to derive the SLEP equation in the next section. Hereafter we simply write ¢ instead
of ¢(&). The main thing is to clarify the spectral behavior of the singular Sturm-Liouville
eigenvalue problem:

L°¢ ={¢,
d) € D(LS) = {d) | ¢s d)x, ¢xx € Cunif(R)}~

Let ¢{; and ¢; be the principal eigenvalue and its eigenfunction of (3.3) satisfying

(33)
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| &6l L2ry = 1, respectively. It is convenient to introduce the stretched problem of (3.3):
o~ o~ d? d -« ) - -
L¢=\——-cr—+f)p=
(3.4) ¢ (dyz CTdy fu)d=1{d,
d; € D(ie) = {(5 | (53 (ﬁys (gyy € Cumf(R)}
where y=x/e is a stretched variable and f& is defined by fi=f,(i° 6°). The L>-
normalized principal eigenfunction ¢0 of (3.4) is defined by

(3.5) be=ve $s="e di(ey).

Of course, the eigenvalues for (3.4) remain the same by stretching.

Remark 3.1. In general, the existence of the discrete spectrum for (3.3) is not
trivial, however, we will show in the proof of Lemma 3.2 that there exists the principal
eigenvalue of (3.3), which tends to zero as €} 0, and that the associated eigenfunction
decays exponentially as |x|-> —+co.

Recalling Corollary 2.2, we see that the limiting form of the potential term fe
becomes

lim fi = fu(W(y; co(B*), B*), B*) in CZ,-sense.

We denote this limiting function by f" +. Therefore, the limiting Sturm-Liouville problem
of (3.4) becomes

2

o d
L* ——+

(3.6) o= (dz c*r fu)d) {o,
deD([*) = D(Le).

Remark 3.2. Differentiating (2.12) with respect to y for ¢ = ¢,(8*) (=c*7), we see
that the limiting problem (3.6) has zero eigenvalue and the associated eigenfunction
is given by W, (»; co(B*), B*).

Formally, the adjoint problem for (3.3) is given by
(3.7) (L)*¢*=("¢", ¢*eD(L")*=D(L)
where

2
(L)*=¢" d—+ca7' d +fu

d 2
Apparently, the stretched adjoint problem is defined by
(3.8) (L)*é*=¢*¢*

where

2
(L5)* --5-3+c*ri+fu

with the same definition domain as (3.4). We denote by ¢§  (respectively, ¢?3*§
Ve ¢&"(ey)) the L-normalized principal eigenfunction of (3.7) (respectively, (3.8))
associated with the principal eigenvalue {* = (5. Applying the change of dependent
variables from ¢ (respectively, ¢*) to ¢ = e “/?9*¢ (respectively, ¢ = e'“/>*¢p*),
it is easily seen that (3.3) (respectively, (3.7)) is converted to the formal self-adjoint
operator:

(3.9) Liy= [s Llri-(2 )2}]¢=4¢.
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Remark 3.3. Since the element in D(L) has no decaying property near +0, the
formal adjoint operator of L* is not defined as (3.7). Therefore, at the present stage,
it is not appropriate to call (3.7) the adjoint problem for (3.3). However, as we will
see in the proof of Lemma 3.2, the eigenfunctions in C,,;(R) of (3.3) (or (3.4)) decay
exponentially as |x|> o0 (or |y| > 00), which may justify the above abuse. In fact, we
will see that the problem (3.3) (or (3.7)) is equivalent to (3.9) in L*(R), as far as
isolated eigenvalues are concerned.

Remark 3.4. There exists a one-to-one correspondence between the isolated eigen-
values and their eigenfunctions of L° and those of (L°)*. Namely, suppose (£, ¢)
(respectively, (¢, $)) is an eigenpair of (3.3) (respectively, (3.4)); then ({, e “™*¢)

(respectively, (¢, e™™ d; )) becomes an eigenpair of (3.7) (respectively, (3.8)). Note that
eigenvalues are unchanged.

The principal eigenfunction of (3.4) and the y-derivative of the stretched u-
component of the traveling front solution converge to the stretched inner layer solution
as follows.

LemMA 3.1. Let ¢¢ (respectwely, é:") be the Lz-normahzed principal eigenfunction
of L® (respectively, (L°)*), and let d)o (respectwel)fe ¢o ") be the L*-normalized stretched

functwn of ¢¢ (respectively, @& ), namely, $5=~'e dS(ey) (respectively, & =
Ve o5 (£y)). Then it holds that

(i) llin b6 (respectively, i5) = yW,(y; co(B*), B*) (respectively, W, (y; co(B*), B*))

in Ccu(R) -sense,

(i) lim $5" = v* W} (y; co(B*), B*) in CZ,,(R)-sense
where y gn(b v* are the positive normalized constants given by

Y=IW,(v; o(B*), B2 and y*=| W} (y; co(B*), B*) 2.
respectively, with W (y; co(B*), B*)= e 9EITW (p; co(B¥), B¥).

Proof. Inview of the construction of (u°, v°) (see § 2, Ikeda, Mimura, and Nishiura
[10]), and Remark 3.4, we can prove the above lemma as in Lemma 1.3 of Nishiura
and Fujii [13].

LeMMA 3.2 (spectral properties of L®). The essential spectrum of (3.3) is contained
in the union of the left regions inside or at the boundaries of the two parabolas:

(3.10) Re ¢ =—(Im ¢)*/(7¢)*+ a.

where a, =1lim,_ . fi <0. The spectrum lying outside the above region consists of real
isolated eigenvalues, and they have a strictly negative upper bound —u, for small ¢ except
the principal eigenvalue (g, where . is a positive constant independent of . The principal

eigenvalue { is the unique critical eigenvalue of (3.3) (i.e., it approaches zero as & 0)
and behaves as

(3.11) i=l(e)e aselo

where {(¢) is a continuous function of € up to € =0 satisfying
0 d %
(312)  fi=timdi(e) = —{ *(B*- u_)—J &(Us, Vo) dx} >0

where (U,, V,) is the outer solution defined in (2.10) and c,(B) is the inner velocity
defined in Lemma 2.3. (See Fig. 5.)

Proof. (i) Location of the essential spectrum. Since the traveling front solutions
U° converge to the critical point with exponential order as |x|- oo, the coefficient f,
of (3.3) becomes an asymptotically negative constant as |x| - c0. It is known (see, for
example, Henry [8]) that the location of the essential spectrum o.(L?) for such an
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F1G. 5. Spectral behavior of the singular Sturm- Liouville operator L*.

operator as L° is contained in the union of the left regions inside or the boundaries
of the following curves:

(3.13) S.={¢|-&e*y*~icery+ta,—{=0, —0< y<o0}

where lim, . f,; = @.. It is easy to see that the sets S, are two parabolas in C defined
by

(3.14) Re ¢ =—(Im¢)*/(c7)’+ a..

Note that the above two parabolas are uniformly bounded away from the imaginary
axis for small &.

(i) Location of the isolated eigenvalues. Let { lie outside the union of the left
regions inside or the boundaries of S.. Suppose that such a { belongs to the spectrum
of (3.3); then it must be an isolated eigenvalue. First, we will show that the associated
eigenfunction must decay exponentially as |x| - co. To do this, it suffices to consider
the limiting first-order systems of (3.3) as x > *oo:

awlo) (el o))
G139 (o) (carore ana)
The eigenvalues of the matrix of the right-hand side are given by
er 1 cr\’ 4
1 —x=1[| =) +5(—a.+0).
(3.16) 2¢ 2\/(.9) 82( a.+{)

Here we denote by %x/ (ct/€)*+(4/€*)(—a.+ ) the complex number whose real part
is greater than |c|7/2¢. Note that the numbers in (3.16) become pure imaginary numbers
if and only if { lies on the parabolic curves S. (see (3.13)). Since we assume that ¢ is
outside the parabolic regions, the real parts of (3.16) are not equal to zero. Therefore,
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the real parts of two eigenvalues of (3.16) have the opposite sign. Suppose ¢ is an
eigenvalue and ¢ is the associated eigenfunction of (3.3) in C,,;(R). Then it is well
known from the general theory (see, for example, Coddington and Levinson [1]) that
¢ has the same asymptotic behaviors as those of solutions of (3.15). when x> +oo0.
Namely, ¢ must decay exponentially as

(3.17) 6| = exp {—cl

=Fri(§)}x as x > 00
2¢e

where r.({) are defined by

(3.18) r.()=3 Re \f(”)2+%(—ai+ ) (>'f-'1).
€ € 28

Now let us apply the change of independent variables from ¢ to ¢ as
(3.19) Yy=e (T,

Then, (3.3) is converted to the self-adjoint form (3.9). Note that the eigenvalues are
invariant. It follows from (3.17) and (3.18) that ¢ also decays exponentially strictly
faster than O(exp (—(|c|7/2¢€)|x|)) in both directions x - +co. Conversely, it is clear
that any eigenvalue of (3.9) is real and the corresponding eigenfunction that belongs
to L*(R) must decay exponentially as |x| > +co. Therefore, it is easily seen that there
is a one-to-one correspondence of the isolated eigenvalues between the problem (3.3)
in C,nir(R) and the problem (3.9) and L*(R). In fact they are exactly the same. Thus
we can conclude that the eigenvalues of (3.3) are real and the associated eigenfunctions
decay as does (3.17).

Next we will show the existence of the principal eigenvalue {5, and that the
remaining eigenvalues (if they exist) are strictly smaller than {5 up to ¢ =0. It is
convenient to consider this problem in the self-adjoint form (3.9) in L*(R). The principal
eigenvalue {; is characterized by the maximum value of the variational problem:

(3.20) max Q°(¢, ¢)smax{—32<¢x, t/fx>+<{ " ( T) }w, ¢>}

where ¢ varies in H'(R) satisfying ||¢|| 2y =1

First note that U5 = (uy, vy) satisfies (LP) ., with A =0. Therefore, applying the
same change of variables as (3 19) to uZ, we find that ¢°=e “"/29*y% satisfies
Ley+f5 e “7?9%p: =0. Thus ¢° = ¢/ ||| 12r, satisfies

Q (Y%, ¥°) =(—f5 e v 1Y || 2wy ¥°)-
In view of Lemma 3.1 and the construction of (u°, v°), we see that (—f ¢ e~ "/~ i )
JU°)

is uniformly bounded for any small ¢ and that ||¢°|| .2, = O(1/V¢). Hence, Q°(¢°
satisfies

Q¥ ¢ )=~cVe

for some positive constant ¢ that is strictly larger than the supremum of the essential
spectrum (see (3.10)). This implies the existence of the isolated principal eigenvalue
£§. Let ¢ attain the maximum value; then || also attains the same value. Therefore
we can take ¢ to be nonnegative. Moreover, noting that 5 H*(R), ¢§ is strictly
positive (so is the principal eigenfunction ¢§ (=e'“/***y¢) of (3.3)), since if Y(x) =0=
¢'(x) at some point, ¢ becomes identically zero. Let ° be an arbitrary eigenvalue of
(3.9) and let ¢° be an associated eigenfunction; then it holds that

(3.21) ezj_ (¢o)2{ (Z)} dx=5-F.
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Apparently, £&=7° holds. Suppose ¢ = {¢; then it follows from (3.21) that ¢°/ ¢ =
const., which implies that {; is a simple eigenvalue. Now we will show that all the
other eigenvalues are strictly below the principal eigenvalue {; up to £ =0. Namely,
there exists a positive constant u, independent of £ such that

(3.22) - Zpe>0

holds for any eigenvalue {° (#¢¢) and small e. To show (3.22), it is convenient to
introduce the stretched variable

(3.23) y==.
€
Then (3.9) becomes
2 2
(3.24) Lij= [;—yz+{f:—(%’) }] §=0.
Let J;S be defined by
(3.25) Js=e Yi(ey).

Then ¢ is the principal eigenfunction of (3.24) with ||¢73|| 1w = 1. Similarly, ¥° is
defined to be v& ¢°(ey). Formula (3.21) can be rewritten as

A

o] " d & 2 _
(3.26) j (wz)Z{;i; (%—)} dy=g5- I

Suppose the claim (3.22) does not hold. Then we can find a sequence ¢, 0 as n1c©
such that there exists another eigenvalue {7~ satisfying

(3.27) liTm Lo = liTm &

Here we use the fact that {5 remains bounded for small &. We can assume without
loss of generality that {i» is the second eigenvalue of (3.9) (or (3.3)). Let us denote

by ¢ (or ¢f in y variable) the corresponding normalized eigenfunction to {7. Note
the following orthogonal property:

(3.28) (Wi, ¥5=0 and (¥, ¥5), =0.
Here we need Sublemma 3.1. .
. SuBLEMMA 3.1 There exist a subsequence {¢,}, of {&,}, and two functions 5 and
Y7 in H*(R) such that

lim ¢ =y in H*(R)-sense for i =0, 1.

n'foo

Proof. Noting that both eigenfunctions decay exponentially as |x| - 0o, it can be

shown that both families of functions remain bounded in H,(R) for an appropriate
p>0. Using Lemma 2.6 and (3.24), we can easily reach the conclusion. The details
are left to the reader.

Substituting the results of Sublemma 3.1 and (3.27) into (3.26), we see in the limit
of ¢, 0 that

o d “cl:o 2
[r{a@ o

This implies that § is a constant multiple of l/?i’,o.A However, this contradicts the
orthogonal property (3.28), which is also valid for g and ¢ . This completes the
proof of (3.22).
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Finally, we will prove the asymptotic behavior of the principal eigenvalue {; when
£} 0. The basic fact is that zero is an eigenvalue of £° and the associated eigenfunction
is given by the spatial derivative of %° as has been seen before. Namely, it holds that

(3.30) Lous+fov:=0, gous+ Mo =0.
Using the stretched variable y, this becomes
(3.31) Esﬁ;+f§v;=0, guu5+M€vs—0
where
. d? d -« 1 d2 cd d
[r=—smer—tfi, Mi=——5———4g, dy=—u(ey),
dy* CTd ! £’ dy € dy g " dyu (&)

and so on. Recalling the construction of %° = (u®, v°) (see § 2), we see that both
and vy decay exponentially as |y|=>00. The adjoint operator (L5)* =

d?/dy*+ cr(d/ dy)+ f « has the same principal eigenvalue {; and the correspondmg
eigenfunction ¢>0 is given by e “” qSo (see Remark 3.4). Multiplying qbo to the first
equation of (3.31), after integration by parts we obtain

@, (E)* sy +(feoe, ds"y=0.
Since (L°)* 5" = 5", we have

(fswy, 657
(3.32) o=~ 7w -
° Yo ¢0 )
On the other hand, 0° satisfies
1 d2 cd
—_— e — + ~E ~s 0
£’ dy € dyv gl )=

Integrating this with respect to y, we have

y

(3.33) p=e¢ {c(ﬁs —5°(~0))—¢ I

—00

g(u*, o°) dy}

Substituting (3.33) into (3.32), we obtain

(334)  fo=e¢ <—f§{6(55 —v)-e¢ f_ g(u®, o%) dy}, $3*>/<ﬁ5, b5".

By using Lemma 3.1 and Corollary 2.2, the numerator and the denominator of (3.34)
have the following limits as ¢ | 0:

13?3<{c(aﬂ-u_)~ej_ g (i, "E)dy}( 7). 85 >

(3.35) ~{ern@-o0- [ s, vo ac) - tim -7z, 85

—00

= {C*(B* —v.)— J'_ g(Uo, Vo) dx}(—ﬂ( W, B*), y* W})
and

(3.36) lim (5, $5°) = (W, y* W)
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Recall that W(y; co(B), B) satisfies (see Lemma 2.3)

L W)L W s(W, B)=0
dy’ Ty S
Differentiating this with respect to 8, we have

2

d d d d
(3.37) 7 We —Co(B);l; W +1.(W, B)WB_% Co(B)d—y W+£,(W,B)=0.

Taking the inner product with W} on both sides of (3.37) and using the fact that W}
satisfies

d’ d
e W;*+c0(/s)d—y W3+ fu(W, B)W; =0,

we obtain for g = g*
d

(3.38) T co(BUW,, W)+ (f,(W, B*), W})=0.

Substituting (3.35), (3.36), and (3.38) into (3.34), we can conclude that

lim{—g= —‘—1% cc(B){C(B*—v-)—j

el0 g —o0

0

g( UO, VO) dx},

which is strictly positive from Remark 2.1 and the strict monotonicity of V,, i.e.,

d

0
:1‘“ Vo(0)=C*(B*_U—)_J g(U,, V,) dx>0.
Y —c0

This completes the proof of Lemma 3.2.

3.2. Location of the essential spectrum. In this section we will consider the location
of the essential spectrum of (LP),,. It is known that there are several different kinds
of definitions for the essential spectrum. Here we adopt the definition employed in
Goldberg [7] (see also Henry [8]). However, it should be noted that even if we take
a different one, we can obtain the same a priori bound as in Proposition 3.1, since it
is known that sup o.{(LP). .} does not depend on the choice of the definitions (see,
for example, Edmunds and Evans [2]). Our goal is the following.

ProrposiTioN 3.1. For a given >0, there exists a positive constant 8, independent
of € and T such that

Re {o,(LP),,}=-8,<0

holds for small e.
Proof. The location of the essential spectrum is determined by the following sets:

(3.39) S.={A|det (—u’D—iuM+ N.—AB) =0, —00< y <0}

where
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It is clear that

det (~p>D—iuM + N, —AB) = "“zez'i“f:J'“*"”)‘ —,uz—ifci+8i—)\ -0
becomes
eTA2—{—(er+ &)+ (as + £78.) — 2ipcer}A
+ (e’ +iucer —aL)(uw*+iuc—8.) — B.y.=0.

The roots of this equation are given by
1
A =er [—(em+e?)u’+ (ar+ e718.) — 2ipceT /0]
ET

where
O={(er+e)u’—(a.+em8.)y —4(ucer)* +dipcer{(er+ )’ — (e, + £78.)}
—4er{(p’e® — ar+imcer)(u?— 8.+ iuc) — B.y.}).
After some computation, we have
Re @ ={(er—e*)pu’+(a.—e78,)’ +4e7B.7y., Im®=0.

Therefore,

1
(3.40) A =58-,;[_(57+ )+ (a.+er8,) —2iucer

£V{(er— e)p2+ (as — e8.) P+ demBuy. ]

We will compute the supremum of the real part of (3.40) when u varies in R, which
gives us the upper bound of the essential spectrum. Suppose the inside of the v -part
of (3.40) takes the minus sign or zero; then it is clear that

1
(3.41) Re)\éz—[—(87+ )+ (e +e78.)].
ET

It is obvious that the right-hand side of (3.41) is majorized by

1 1
3.42 — a,+t=6,,
( ) 2eT « 2

which is apparently strictly negative uniformly for small ¢ and 7> 0 from (A3). On
the other hand, if the inside of the v -part takes the plus sign, we need to take it
into account. Without loss of generality, it suffices to consider the case where the
v -part becomes a real number, namely,

{(er— e’ + (a.—er8.) P +4erB.y. (20).
In this case, it follows from B.vy. <0 (see (A4)) that

1
Re A =—[—(er+&e?)u?+ (a.+e7d.)
2eT

(3.43) £{(e7— )+ (a. — £78.) P +4e7B. 7. ]

1
§—2 [—(er+e)u’+ (ar+erd,.) +|(e7— )’ + (o — £78.)|].
ET
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According to the sign of the inside of |-|, (3.43) becomes

b

1 1 1
Py {—2&’u*+2a.}= _£ pWt—a,=—a.
(3.48) Re A = eT T eT eT

1
Y {—2eru’+2e18,} = —pu’+6.=6.,.
ET

Thus we see from (3.44) that

1
(3.45) Re A =max {— a., 81}.
eT

Combining the results (3.42) and (3.45), we can derive the conclusion of Proposition
3.1. Note that we can take —8, to be max {a., 8.} when ¢ is assumed to be taken
smaller than 7' (i.e., e7<1).

3.3. The SLEP equation and the behavior of the isolated eigenvalues in the singular
limit. We will study the location of the isolated eigenvalues and their dependency on
7. As has been shown in § 3.2, the essential spectrum of £° is strictly bounded away
from the imaginary axis, so that the stability properties of the traveling front solutions
depend solely on the behavior of the isolated eigenvalues. In fact as we will see later,
some of the isolated eigenvalues really cross the imaginary axis, and therefore we must
track their behavior rather than try to obtain a priori bounds for them. The main
difficulty in doing so is that, when ¢ 0, the eigenfunctions associated with those
dangerous eigenvalues do not remain in the usual function space such as C,,;(R) or
L*(R). The eigenfunctions actually fall into the measure space (a point measure for
the one-dimensional case). However, the SLEP method enables us to overcome this
difficulty and control these eigenvalues uniformly for small &.

First, we will study the asymptotic behavior of the eigenfunctions as |x|-> +oo.
Since the traveling front solution %° approaches the equilibrium states E, and E_
with the exponential order as |x| > o0, the asymptotic behavior of the eigenfunctions
for large |x| can be described by the limiting constant coefficient system of (LP), ,:

d? d
2
(8 ?d.?ﬁ cara+ ai) w+B.z=¢eTAw,

(3.46).,
w+( & d +6 ) A
+ T C +)Z=
Y dx? cdx z

where o, =lim,, .o fs=f.(E.), B:=f,(E.), y-=g.(E.), and 6. = g,(E.). It follows
from (A3) that

(3.47) a.<0 and det.,=a,8,—B.v.>0.

It suffices to consider the + case only and, for notational simplicity, we omit the
subscript + hereafter. We rewrite (3.46). in the form

d—w—f g—g—cf—aw—ﬂz+ AW,
dx ax e
(3.48),

Lo 9 - w—258z+A

e A Ny z
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or in a vector form

w 0 1/¢ 0 0\ /w
d| ¢ |-a/etTr cr/e —B/e 0| ¢
x| z | 0 0 0 1|z

n -y 0 -6+A ¢/ \n

(3.48),
w
= M5"° ¢ .
z
n

The eigenvalues of the matrix of M;y™ determine the asymptotic behavior of the
eigenfunctions. The characteristic polynomial with the unknown k becomes

K2(K —EI)(K—C)—K<K —EI)()\ —8)—K(K—c)<TA -—g)/s—g—}’
€ € € €

(3.49)
+(TA ——2>(A —68)/e=0.
£
Examining the roots of (3.49), we have Proposition 3.2.
ProPOSITION 3.2. Assume that A belongs to

(3.50) {r € C|Re A >det/a}.

The eigenvalues of the matrix M 5™ are divided into two classes. One is of the order O(1)
and the other is of the order O(1/¢) as |0, each of which consists of two eigenvalues
with positive and negative Re-parts, respectively:

(i) The O(1)-class consists of two eigenvalues, say k%, which remain finite in the
limit £ 0. Their principal parts are given by

(3.51) kl=

with Re kL = 0.
(ii) The O(1/¢)-class has two eigenvalues, say ki, which diverge with order 1/ € as
£ 0. The principal parts of them are given by

(3.52) k=3 (crxV(cr)*—4a)/e+0(1)

with Re k5= 0.

The eigenvectors associated with the above eigenvalues are denoted by E} and
=%, respectively. If we need to distinguish the eigenvalues and the eigenvectors at E.,
and E_, we add + or — after the superscript one or & such as «}", 5.

Remark 3.5. Let A satisfy

b

N det, det_
(3.53) Re/\>—,u,§max{ e+’_g_}
a, a_
then, it is clear from the above proposition that, at both E, and E_, (3.49) has two
eigenvalues with positive real parts of the orders O(1) and O(1/¢) and two eigenvalues
with negative real parts of the same property.

Proof of Proposition 3.2. (i) Multiplying £ to (3.49) gives
(3.54) ak’—cak +(ad—By)—ar+0(e)=0.



STABILITY OF TRAVELING FRONT SOLUTIONS 107

The two roots of the principal part of (3.54) are both simple under (3.50), leading to
(3.51) with the aid of the Implicit Function Theorem.

(ii) Introducing the new unknown K by x =K/ and then multiplying (3.49) by
e* we have

(3.55) KX(K:P—ctk+a)+0(e)=0.

The two roots of the equation K>—crk+a =0 are simple. Therefore, by using the
Implicit Function Theorem again, we obtain (3.52). Since (3.49) is of fourth order, the
above four solutions are all roots of it. The sign properties of the real parts, i.e.,
Re «} =0 and Re «5 =0, can be shown by a simple computation under the assumption
(3.50).

Proposition 3.2 clearly shows that if we suppose there is an isolated eigenvalue
satisfying (3.53) with the eigenfunction ¥ in C.,¢(R), then ¥ must decay with the
exponential order as |x| > c0. This guarantees us that later we will be able to work in
much more comfortable Hilbert space H,(R) for the isolated eigenvalues.

Now we return to the problem (LP), .:

(LP),, Lw+fiz=erAw, giw+Mz=)\z

where A is an isolated eigenvalue and ‘(w, z) is the associated eigenfunction. In view
of Proposition 3.2, we may think that it seems to be appropriate to regard the mapping
of the left-hand side of (LP),, to be the one from X (R)x X2,(R) to X§,(R)X
X9.1(R). However, our basic strategy is to find the nice limiting eigenvalue problem
from which the necessary information for positive € can be easily extracted. Unfortu-
nately, the above setting for function spaces is not fit for this purpose, since it turns
out that eigenfunctions associated with the isolated eigenvalues are no longer usual
functions in the limit 0. More precisely, their w-components approach the Dirac
point measure after some scaling, and, at the same time, z-components tend to smooth
functions except the jump discontinuity of the first x-derivative at the layer position.
Therefore, it is necessary to replace the above function spaces by weaker ones with
the decaying property. For this purpose, we first convert (LP), , into a single equation
with respect to z by solving the first equation of (LP),, with respect to w, and then
we put a new appropriate function space for z, namely, H}(R) which is valid up to
£ 0. The following lemma is needed for this procedure.
LeEMMA 3.3. For small g, it holds that

[
ET

g o{(LP)..}.

Proof. We can prove this in a similar way to that of Lemma 2.1 in [13], so we
leave the details to the reader.

Owing to Lemmas 3.2 and 3.3, we can solve the first equation of (LP),., with
respect to w for A € C; (see Remark 3.5 for the definition of 4):

(3.56) w=(L*—erA) " (=f52).
For later use, we decompose (3.56) into two parts
1
(3.57). (L*—erd) '(\)=————P°(-)+ (L —emA)"(+)
{o—€eTA

where P° is the projection operator on the principal eigenfunction of L® defined by

(3.57)s P()=(-, 55,
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and (L° —e7A)" is the remaining part of the resolvent, i.e.,

(3.57). (L*—emA)'(-)= (L —emA)7'(+)— Pe(-).

Lo—€eTA

Remark 3.6. In view of Lemma 3.1 and (3.57). (see also Lemma 3.4), it is easy
to see that

(3.58) I(L® = emA) || ex) = M,

holds for any small ¢ and A € C; with M being an appropriate positive constant
independent of &. Here the underlying space X is L2(R) (p =0) and £(X, X) denotes
the set of bounded linear operators from X to X.

Substituting (3.56) into the second equation of (LP), , we have a closed eigenvalue
problem with respect to z:

€

8u
{o—

The core of the SLEP method consists of the following two key lemmas, which
characterize the asymptotic behaviors of the second and the third terms of the left-hand
side of (3.59).

LeMMA 3.4 (the first key lemma). Let F(u, v) be a smooth function of u and v.
Then it holds that

(3.59) M°z+ Pe( —fez)+gi(L*—emA) (=fiz) = Az

(L* —e7A)'(F°h) e F*h/f¥ strongly in L -sense

for any function he L,(R)N L*(R), 7eR,, and AeC, 4> where F°=F(u®, v°) and
F*=F(U,, V,). Moreover, the convergence is uniform on a bounded set in C;x H pl(R)
(p1> p=0) with respect to (A, h).

Proof. We can prove this in the spirit of the proof of Lemma 2.2 in Nishiura and
Fujii [13] with the aid of Lemma 2.6. So we leave the details to the reader.

LemMMA 3.5 (the second key lemma). It holds that

(a) 11m \/f_e b5 = k¥,
in (H})*(R)-sense
(b) llm 0 Ve ¢0 = k38

where 8,= 8(x) is the Dirac 8-function at x =0, and k¥ (i=1,2) are positive constants
given by

d
kY =—y™"W,, W) B co(B*)>0,

k3 = y{g(h.(B*), B*)—g(h_(B*), B*)}>0.

Proof. With the aid of Lemma 3.1 and (3.38), we can prove this in a way similar
to that of Lemma 2.3 in Nishiura and Fujii [13], so we omit it.

Now we are ready to derive the singular limit eigenvalue problem of (3.59). First
we rewrite the second term of (3.59) through e-scaling:

u E(__gE < fvd)O /\/_)
T S = el Ve
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Using the above two key lemmas and Lemma 3.2, we see that, as |0, (3.59)

becomes
d? d k* det*

(3.60) a—gz—c*g;z+z§_—”(z, 80)80+ I ——z=)\z ze H,(R)
where k* =k¥k¥, det*=fFgk—f¥g¥ f¥=f£.(U,, Vy), and so on. Here, of course,
(3.60) should be written in a weak form; however, for notational simplicity, we write
it in a classical form. We call (3.60) the SLEP differential equation of (LP).,. The
formal adjoint equation to (3.60) is given by

d? d det*

(3.61) "?Z#+c*az#+g* —(z¥, 80)60+f—* z¥=Az¥, z¥e(H})*(R).
Without loss of generality, we can take
(3.62) (z,80)=1

as a normalization for z, since if (z, §,) =0, z becomes identically zero. Under (3.62),
(3.60) is equivalent to

d? 4 d det* |

(3.63), ks —c* e 4 I z5=\z", z*e H,(R.),
(3.63) z"(0)=2z7(0),
(3.63), di (0) —di 0)= —L.

0 —TA

It is clear that z* and z~ are smooth functions of x on R, and R_, respectively. The
task is to find A such that the associated solutions of (3.63), and (3.63), satisfy the
jump condition (3.63). with respect to the first derivative.

Let us convert the SLEP differential equation (3.60) into the equivalent transcen-
dental equation, which is much easier to deal with. We first introduce the inverse of
the following differential operator T5™“; H,(R)-> (H})*(R),

2

d d
(3.64), Ty = e 2+c;—gu(L£—£TA) (=fs)—grtaA

through the associated bilinear form

B3 (21, 22) =((21)x, (22) ) + e{(21)x, 22)
—(gu(L* —erA) (=fiz1), ) (A —g2)71, 22)

for z,,z,e H :,(R). Recall that ¢ is not an independent parameter but a function of ¢
with ¢*=1lim ¢ c(g).

LEMMA 3.6. There exist positive constants €, and p such that the differential operator
(in the generalized sense) T5™: HL(R) > (H,)*(R) is uniformly invertible for 0= ¢ < ¢,
7 in a bounded set in R, and A € C;, where i is a positive constant stated in Remark
3.5. We denote this inverse operator by K5™°:(H,)*(R)-> H,(R). Moreover, K™
depends on T and A analytically, and depends on & continuously up to € =0 in operator
norm sense, respectively.

Proof. We can prove this lemma in a way parallel to that of Lemma 3.1 of Nishiura
and Fujii [13], so we leave the details to the reader.

(3.64),
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Applying the operator K™ to (3.59), we have
(~foz, ¢4 /Ve) ( ¢o>
3.65 =05 B0 TTP pene( ge
( ) z Lo/e—TA A Ve)’
which shows that z is a constant multiple of K5™°(g5(p5/Ve)), namely, for a
constant «

(3.66) z= aKi”’“(gu 33) € H,(R).

Substituting (3.66) into (3.65), we see that the nontrivial solution z of (3.65) exists if
and only if A satisfies the algebraic-like equation

& e e B0 _ b
(367) € TA = <KA (gu\/g>’ fn \/;>
We set

(3.68) 9()&;8,7,0)5585—-7)\ <ch< u¢0) —fv\/_>

This is the basic relation among ¢, 7, ¢, and A in the sense that the behaviors of isolated
eigenvalues with respect to ¢ (including € =0), 7, and ¢ are governed by (3.68). Recalling
Lemma 3.1, the left-hand side of (3.67) is defined continuously up to £ =0. On the
other hand, in view of Lemmas 3.5 and 3.6, the right-hand side of (3.67) is also well
defined up to & =0. Therefore (3.68) holds uniformly for small € up to e =0. Thus,
the limiting equation of (3.68) as |0 is given by

(3.69) F(X; 0, 7, c*) =¥ — 1A — kXK F™"8,y, 8oy =0.

We call (3.69) the SLEP equation of (LP). .. The great advantage of the SLEP equation
is that not only the limiting location of isolated eigenvalues but also the behaviors of
those for positive £ can be obtained from (3.69) by applying a usual Implicit Function
Theorem to it at € =0. This is due to the nice limiting characterization as in Lemmas
3.4 and 3.5.

We first analyze the SLEP equation (3.69), and then we will return to (3.68) in
the next section. The following lemma enables us to concentrate on the study of the
behavior of real eigenvalues of (3.69).

LemMMA 3.7. For a given 7> 0, there exists a positive constant u, (which may depend
on 7) such that the SLEP equation (3.69) does not have complex isolated eigenvalues in
the region C,,

Proof. See the Appendix for the proof.

The real eigenvalues of (3.69) have a simple geometrical 1nterpretat10n namely,
they are the intersection points between the straight line S(A; 7, ¢*)= {0 —7A and the
curve

(3.70) G(A; 7, ¢*) = K*(K ™" 89, 8.

G satisfies the following properties as a function of A.

LEMMA 3.8. G(X; 7, ¢*) is a strictly decreasing and convex function of real X for
A>—fi and satlsﬁes the [ollow:ng

(i) G(0;7,c*)=¢(7,

(if) lim, .40 G(A; 7, ¢*)=0.

See Fig. 6.

Proof. We can prove this, except property (i), exactly in the same manner as the
proof of Lemma 3.3 in Nishiura and Mimura [15], so we leave the details to the reader.
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G(r; 7, c%)

—i 17 0 3 g

A¥(7, c*) 3% =

(a) —-r< G(O 7, c¥) (stable)

]

l

E /F/G(A; 7, c¥)

1

6

L G-

|
i é A
—4! 0

! A¥(r) ¢*) o

(b) -7>—G(0 7, ¢*) (unstable)

FIG. 6. The limiting Iocatton of the critical eigenvalue of (LP),, is represented as an intersecting point
of two curves G(A; 7, c*) and {0 — 7A, which becomes negative (respectively, positive) when —7 < (respectively,
>)(d/dA)G(0; 7, c*).

As for the property (i), this is a direct consequence of the translation invariance
property. In fact, the spatial derivative of the traveling front solution %; = (u;, vy) is
an eigenfunction of (LP),, with A =0 for any small &. Therefore the SLEP equation
(3.69) must also have a zero eigenvalue, implying the property (i).

It is easily seen from Lemma 3.8 that there are exactly two intersection points
including the multiplicity between S and G: as is expected, one is the zero eigenvalue
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that comes from the translation invariance (see Lemma 3.8(i)), and the other is called
the (real) critical eigenvalue. We denote this critical eigenvalue by A¥(7, ¢*) or simply
A¥(7). In view of Fig. 6 and Lemma 3.8, we easily see the following lemma.

LEMMA 3.9. There exists a unique real critical eigenvalue A = X¥(7, ¢*) and its sign
is determined as follows:

A (1, ¢c*)E0 if and only if —Téi G(A; 1, c*)
dx A=0
From Lemmas 3.7 and 3.9, and Proposition 3.1, we can conclude the following
stability properties of traveling front solutions in the singular limit sense.
THEOREM 3.1 (linearized stability in the singular limit sense). Let U* = (u°, v°)
be a traveling front solution of (P). . with the asymptotic velocity c* as €} 0. Then, its
singular limit traveling front solution is

stable d
marginally stable 3 if and only if —7%;1—): G(A; 7, c*) ,
unstable =0

respectively. Here the terms stable, unstable, and marginally stable are used in the linearized
sense; for example, stable means that all the spectrum have strictly negative real parts
except the zero eigenvalue associated with the translation invariance.

3.4. Stability of the traveling front solutions for positive £. In the previous section,
we have studied the stability properties of the traveling front solutions in the singular
limit sense. Namely, we have derived the SLEP equation (3.69), which tells us the
limiting location of the real critical eigenvalue, and have given a criterion for the
stability of traveling fronts (see Theorem 3.1). The great advantage of the SLEP method
is that stability properties for positive £ can be obtained directly from (3.69) by using
a usual Implicit Function Theorem, despite the fact that the linearized problem (LP). ,
and the associated eigenfunctions behave in a singular manner as €| 0.

Generically speaking, stability properties are preserved when & becomes positive.
The only exceptional case is the third one (the marginal case) in Theorem 3.1 where
stability properties as well as existence for positive € become more delicate problems.
The discussions of the details for this case are postponed to a forthcoming paper where
we have a nice qualitative description about what happens to the tangential case in a
structurally stable manner when we look at the behavior of the solution branch in
(7, ¢)-space rather than looking at just one particular solution.

The location of eigenvalues of (LP), . for positive ¢ is determined by (3.68), i.e.,

(3.68) F(A; e, T)=-i—3—7)t—<Ki”’”<g,ﬁ j_i_),—fjtf/gg>=0,

We can analyze this equation as a perturbation of the SLEP equation (3.69). We use
the simple notation A¥(7) as a critical eigenvalue of (3.69) (see Lemma 3.9).

LEMMA 3.10. The real critical eigenvalue A*(7) of (3.69) can be extended uniquely
to the solution A:(1) of F(A; €, 7) =0 for small e, where A (7) is real and continuous
with respect to ¢ satisfying

el %
151?3 Ad(r)=A%(7).

Moreover, there exists a positive constant w, such that there are no real solutions of

F(A;e,7)=0in C,, for small ¢ except A;(7) and the zero eigenvalue coming from the
translation invariance property.
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Proof. Recallthat = %(A; ¢, 7) is analytic with respect to A in C; and continuous
with respect to € up to € =0. Since A =0 is always a solution of ¥ =0 because of the
translation invariance property, ¥ can be decomposed as

F(A,e,T)=AH(A; &, 7)

where H depends on (A; g, 7) in a similar way as &% and H is real-valued for real A.
The critical eigenvalue A ¥(7) of the SLEP equation (3.69) is a solution of H(A; 0, 7) =0,
namely,

(3.71) H(A¥(7);0,7)=0.

When A¥(7)#0, it follows from Lemmas 3.8 and 3.9 that the straight line S and the
convex curve G intersect each other transversally at A = A¥*(7), which implies that

0F . wnO0H L
oA (AC(T), 0, T)_AC(T) oA (AC(T)’ Oa T)¢0
Therefore, it holds that
oH
(3.72) — (A¥(7);0; 1) #0.
dA
When A¥(7) =0 (the tangential case), it holds that
oF
— (0,0, 7)=0.
. (00,7)
However, after some computation we have

2
8879:(0; 0,7)=2 %{-—\-I (0; 0, 7) = —2k*(K¥™")38,, 85) < 0.

Thus, (3.72) holds whether or not A¥(7) = 0. Combining (3.71) with (3.72) and applying
the Implicit Function Theorem to H =0 (if necessary, we extend H to the negative &
continuously), we obtain the unique real critical eigenvalue A = A5(7) of F = O satisfying
lim, ;o A%(r) = A% (7).

Noting Lemma 3.9 and the uniqueness property of the Implicit Function Theorem,
the latter part of Lemma 3.10 can be proved by contradiction without difficulty.
Therefore we leave the details to the reader.

Lemma 3.10 is essential for judging the stability properties, since we have the
following a priori bound for the remaining spectrum.

LeEMMA 3.11. Both the essential spectrum and the nonreal isolated eigenvalues of
(LP).,, are uniformly bounded away from the imaginary axis for small e. Namely, suppose
that A belongs to the above spectrum; then it holds that

(3.73) AEC,,,

for a positive constant p independent of small e.

Proof. For the essential spectrum, this result is already proved in Proposition 3.1.
For complex eigenvalues, we first show the following sublemma.

SUBLEMMA 3.1. Suppose that A € C; is an isolated eigenvalue of (3.68) (for the
definition of [i, see Remark 3.5); then for small ¢ it satisfies

IAl=M,

where M, is a positive constant independent of e.
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Proof. Inview of Remark 3.6 and Lemma 3.6, we can easily prove by contradiction
that there does not exist a divergent sequence of eigenvalues in C; of (3.68) as 0.
The details are left to the reader.

Using this sublemma, we will prove (3.73) for complex eigenvalues by contradic-
tion. Suppose that there does not exist such a u; for any small e. It follows from
Sublemma 3.1 that we can find a sequence of complex eigenvalues {A, },=; (Im A, #0)
of (3.68) with ¢, | 0 as n1 0o, which converges to A, satisfying the SLEP equation (3.69)
with Re A, =0. By recalling Lemma 3.7, the only possibility is that A, is equal to one
of the real eigenvalues of (3.69). However, in the view of Lemma 3.10 and its proof,
we see that both eigenvalues A¥(7) and the zero of (3.69) are uniquely extended as
real solutions of (3.68), which is a contradiction and completes the proof of Lemma 3.11.

Except in the tangential case, i.e., A¥(7) =0, we can conclude the following from
Lemmas 3.10 and 3.11.

THEOREM 3.2. Let U° be a traveling front solution of (P), , with the limiting velocity
c¢*=1lim, o c(g) constructed in § 2. Then, for small e, U° is

(i) Asymptotically orbital stable in C,;(R)-topology if

(3.74) <L G| =K 60, 80,
ax
or
(ii) Unstable if
d "
(3.75) —r>—G(A; 1, %) =—k*((K¥™° )280, 8o)-
ax

Proof of Theorem 3.2. 1t is clear from Lemmas 3.9 and 3.10 that the inequality
7> (respectively, <) —(d/dA)G(A; 7, ¢*)|,~o implies the unique existence of the nega-
tive (respectively, positive) eigenvalue A;(7) for small &. The simplicity of this critical
eigenvalue A;(7) and the zero eigenvalue associated with the translation invariance
can be proved in an analogous way to that of Theorem 4.1 of Nishiura and Mimura
[13]. Therefore we omit the details. Thus, noting Lemma 3.11, we obtain the conclusion
of Theorem 3.2.

4. Relation between stability and the sign of the Jacobian of matching conditions. In
the previous section, we have obtained a stability criterion in which the location of
the unique real critical eigenvalue is determined via comparison of slopes at the origin
of two curves of the SLEP equation. In this section we will show that the stability
criterion in Theorem 3.2 corresponds exactly to the sign of the Jacobian
a(®o, ¥o)/(c, B), where ®, and ¥, are the functions used in C'-matching conditions
for singular limit solutions in § 2. In other words, the intersecting manner of two curves
B =Bo(c) and B =B,(c), associated with ®,=0 and ¥,=0, respectively, determines
the stability properties of traveling front solutions.

This not only gives us a clear geometrical interpretation of the stability criterion,
but also has a useful practical application. In fact, when we construct the singular
limit solutions, we can also judge their stabilities simultaneously. To prove this relation,
we will prepare three lemmas: the first one deals with the formula of (d/dc)Bo(c);
similarly, (d/dc)B;(c) is computed in the second one; and, finally, in the third lemma
a relation between the coefficient of the SLEP equation and the depth of the jump
j(B) at B =B* (see (4.1)) is given.

We introduce the following notation for later use:

(4.1), G.(V)=g(h(V), V),
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[ G(V) for B=V <vmax,
(4'1)b GB(V)={G_(V) for Vimin < V<ﬁ,
and
(4.1), J(B)=G.(B)—G_(B).

LemMA 4.1. Let B = By(c) be the relation for B and ¢ (see Lemma 2.2) where the
outer equation (2.7). for v has a unique C'-matching solution Vy(x; c) (see (2.10)).
Then it holds that

0

(4.2) -‘%BO(C)= —j(ﬁo(c))“l{c(ﬁo(c)"v—)_J g(Uo, Vo) dx} (20, 28)

where  Uy=hg(Vo), and z, (respectively, z3) is given by (d/dx)
- Vo(x; ¢)/(d/ dx) Vy(0; c) (respectively, e”*z,). Moreover, if (c, Bo(c)) is an intersection
point with B = B;(c), then z, (respectively, z§) is the limiting z-component of the eigenfunc-
tion associated with the translation free zero eigenvalue of (LP). . (respectively, the
adjoint problem (LP)Y,) wunder the normalization z,(0)=1 (respectively,
zg(0)=1).

Proof. For arbitrary c € R, the outer solution V, matched in C'-sense at the origin
exists uniquely for B = Bo(c) and satisfies the following equation (see Lemma 2.2):

d? d
(4.3) '2;5 VO_CE; V0+ Gﬁo(c)( V0)=0.

Although (4.3) should be written in a weak form due to the jump discontinuity of
Gg,(o(+) at the origin, we write it in a classical form for notational simplicity. Note
that the C'-matched solution V, of (4.3) can be regarded as a function of the velocity
¢; Vo= Vo(x; ¢). We rewrite (4.3) as

d? d A
Vo— C—; VotJ(Bo(€)) Hpye)( Vo) + Ggyie)( Vo) =0

(4.4) E P

where Hg (.( ) denotes the Heaviside function with unit jump at Bo(c), and GBO(C,( )=
G, (o)(*)—J(Bo(€c))Hgyy(+), which is a continuous function of x. Note that
Hpg )(Vo(x)) is the Heaviside function with unit jump at x=0 as a function of x.
Differentiating (4.4) with respect to x, we obtain

d? d d 4
(4.5) E;i (Vo)x— Ck; (Vo)x +j(Bo(c))8o(x) +"'1T, Gﬁo(c)( Vo) (Vo) =0.
On the other hand, differentiating (4.4) with respect to ¢, we have
d’ . d . d dj .
:i';i Vo— C’J; VO_:i; Vo"‘;é_ (BO(C))HBO(C)( Vo)Bol(c)
(4.6) —J(Bo(e))( Vo)x(o)—lao(x)f}o(c) +j(Bo(c))Bo(x) Vo

d 4 - d A ,
+;‘§ Gﬁo(c)( VO)BO(C) +"7‘7 Gﬁo(c)( VO) Vo = 0’
where - means c-differentiation. In view of (4.5), it is easily seen that (V,) ¥ = e™*(V,),
satisfies

d? d

d 4
(4.7) E;i ( Vo)jcP + CE; ( Vo):cF +f(ﬂo(c))5o(x) +W Gﬁo(c)( Vo)r =0.
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This is apparently the adjoint equation of (4.5). Multiplying (V,)¥ to (4.6) on both
sides, after integration by parts we obtain

(Vo) (Vo) 23+ {<;—; (Bo(c) Hao(Vo), (vo)::>
(48) (BN (Vo)u(0) 50, (V) )
(o 25 Onaa Vo), (vo)x>}/éo(c) ~o.
We will show the following equality:

dj d

(4.9) <% (Bo(C))Hpo(c)( Vo), (Vo)r> <d.3
Making the Newton quotient of Gﬁ, we see that

<GB+AB(VO)—G,3(VO) (V)#>=L

AB H 0/ x AB

G (Vo), (Vo) ¥ >

J o {éﬁ+AB( Vo) — Gﬁ( Vo)} - (Vo);F dx
(4.10) i

1 o0
<5 U(B+88)~j(B)) I (Vo): dx
B XB+AB

where x; denotes the value of x where V, becomes 8. Here, for definiteness, we only
consider the case of AB > 0. Note that x, is uniquely defined because of the monotonic-
ity of Vy(x). Since IGﬂ+AB(V0(x)) GB(VO(x))I<maXB ‘e[ B,B+AB] (B —j(B)=
const. AB and xg.,ap tends to xg as AB -0, the first term of the right-hand side of
(4.10) goes to zero when AB - 0. Therefore, it follows from (4.10) that

d i,
<dB Gﬁ(VO) (Vo) > dg J;B (Vo)o dx,

which shows (4.9) at B = B(c). Substituting (4.9) into (4.8) and noting that (V,), =
(Vo) ¥(0), we have

(Vo)x, (Vo)) _
J(Bo(¢))

where z, (respectively, z&) is defined by (Vy),/(V,)«(0) (respectively, (Vo) ¥/(V,) ¥(0)).
Let us compute the value of (V;),(0). Integrating (4.3) from —oo to 0, we obtain

(4.11) Bo(c) =~ =i (Bo(€) 7 ((V6)<(0)) (20, 25

(V0)x(0) = c{Vo(0)—v_} - J_ GBo(c)( Vo(x)) dx.

Since x =0 is the switching point from the left branch h_(v) to the right one h.(v),
and V,y(0) = By(c), this becomes

0

(4.12) (V0)x(0) = c{Bo(c) —v-}— j g(Uo, Vo) dx.
Substituting this into (4.11), we obtain (4.2).

The last claim of Lemma 4.1 is clear from the fact that the x-derivative of the
traveling front solution becomes an eigenfunction associated with the zero eigenvalue
of (LP), , for any small e.
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In view of Lemmas 2.3 and 2.4, the inner layer solutions were defined by solutions
of the following stretched scalar equation:

(4.13) W,, —crW, + f(W, B) =0, W(£0)=h.(B), W(0)=«a

where ¢=¢y(B)/7 for any B e(v_, v.). By recalling Remark 2.1, the inner relation
¢ =co(B)/ 7 can be solved with respect to B8 as B = B;(c). Here, of course, 8, depends
also on 7; however, for simplicity, we do not write the 7-dependency explicitly.
Therefore the solution of (4.13) can be regarded as a function of ¢ for any fixed 7.

LEMMA 4.2. Let B=B,(c) (=B;(c; 7)) be the inverse function of the inner C'-
matching condition ¢ = co(B)/ 7 in Lemma 2.4. Then, it holds that

(4.14) BI(C)=T/:1% co(Bi(c)).

Proof. Differentiating (4.13) with respect to ¢, we have
(4.15) W,, = erW, =W, + f,(W, B () W+ £,(W, B (¢))Bi(c) =0

where - means c-differentiation as before. On the other hand, differentiating (4.13)
with respect to y, it is easily seen that W, satisfies

d? d
(4.16) E)_/E Wy-—CTZi; W, + £.(W, B;(c)) W, =0.
Therefore, W, = e™“” W, satisfies
d2 #* d # #
(4.17) W Wy +CT;1; w3 + £ (W, B,(c))Wy =0.

Note that both W, and W} decay exponentially as |y| >+ (see Lemma 2.3). Taking
the inner product with W} on both sides of (4.15) and using (4.17), after integration
by parts we obtain

(4.18) —(W,, W)+ B (c)(fo(W, Bi(c)), W;)=0.
When we recall the relation (3.38), it follows from (4.18) that

. d
Bi(c)= T/EE co(Bi(c)),

which proves (4.14).

Now let (c*, 8*) be an arbitrary transversal intersection point between 8 = B(c)
and B = B;(c), and U° = (u®, v°) be the corresponding traveling front solution. As we
have remarked before, the spatial derivative 5 = (uy, vy) satisfies (LP),, with A =0
for any small e. Therefore the SLEP differential equation (3.60) must also have zero
eigenvalue and the z-component of the associated eigenfunction, under the normaliz-
ation (z,, 8y) =1, is given by

k* .
(4.19) zo="7; K§™ 8.
{o

Recall that c* is the limiting velocity of %° as £} 0. Also noting that z& (=e <" z,) is
a kernel function of the adjoint problem (3.61), we see that it is represented by
*

k .
(4.20) 28 == K§™8,.
£o
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On the other hand, recalling that v° remains as a C'(R)-function up to £ =0, we
see that v; converges to (Vy),. In view of (4.5) and Lemma 3.6, (V,), is represented by

(4.21) (Vo) =j(B*)K¥™"8,.

Here we use the fact that dé,,*/dV( Vo) = det*/f. and B* = lim, o v°(0). It is clear that
Zo (=lim, o (v5/v%(0))) and (V5)./{(Vs)x, 8o) must coincide with each other. Thus in
v1ew of (4.19) and (4.21), we see that the following relation holds among the numbers
k {O H and J(B*)

LEMMA 4.3. Let (c*, B*) be an arbitrary intersection point of B = Bo(c) and B =
Bi(c). Then it holds that

_Jj(B*) k*
(4.22) (Voo (0) 55

As has been seen in §2, the singular limit traveling front solutions can be
constructed by finding the intersection points between B = B(c) and B = B,(c). We
will show that the manner of intersection of these two curves is exactly equivalent to
the sign of the real critical eigenvalue in Theorem 3.1. In other words, the inequalities
B:1(c)S Bo(c) at ¢ = c* are equivalent to those in Theorem 3.1. Our goal is the following.

THEOREM 4.1 (stability and matching conditions). For a given v> 0, let (c*, B*)
be an arbitrary intersection point of outer and inner relation curves B = By(c) and B = B;(c)
in § 2. Then, the inequalities

. . d
(423) berzhe (=)
are equivalent to
(424) SrB GO n e = —kH(KE) 8, 50,
A=0

which determine the stability properties of the traveling front solution. Moreover, the
inequalities (4.23) (or (4.24)) are equivalent to the sign of the Jacobian of C'-matching
conditions (Py(c, B; 7), Vol(c, B)) =(0,0) (see § 2), namely,

a((DO, d’O)
4.25 —===0 at (c*, B*).
(4.25) gy B0 al (%Y
Proof. Using Lemmas 4.1 and 4.2, the inequalities (4.23) can be rewritten as
_ dco(B*) 0 2
(4.26) i (:15 Jj(B*)” { *(B*—v-) _J g(U,, Vo) dx ¢ (2o, z3).
Recalling the formula (3.12) for f(’)" and using Lemma 4.3 and (4.12), (4.26) becomes
. (&
(4.27) -rE- k"* (20, 23).
Substituting the expressions (4.19) and (4.20) into (4.27), we have
(4.28) —TZ—kXKF™" 8, K§™80) = —k*((KE™, 80), 8o),

which is clearly equivalent to (4.24). Finally, we will prove the equivalence to (4.25).
Rewriting the Jacobian as

3(Po, Wo) _9Po 3%, { 3®o/dc 8‘1’0/8c}
a(c,B) 3B 3B a%y/aB o¥e/aB)’
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we see from the formula of derivative of the implicit function that, at the intersection
point (c*, 8*) of B = B(c) and B = B,(c), it holds that
6(¢0, q’o) a(bo 6‘1’0 . .
(4.29) — =——(B1(c*) = Bo(c*)).
(¢, B) l(epy=(cxp* OB 9B ! °
This combined with (2.9) and (2.15), proves the last claim of Theorem 4.1.
Example 3.1. Suppose that B = Bo(c) and B = B,(c) intersect each other as in Fig.

4(b). The traveling front solutions corresponding to P and Q (respectively, R) are
stable (respectively, unstable).

Appendix. Proof of Lemma 3.7. The basic idea of the proof is essentially contained
in the proof of Theorem 3.1 of Nishiura and Mimura [15]. However, it should be
noted that £¥ and G(A; 7, c*) (see (3.12) and (3.70)) depend on the parameter 7, which
is a different point from the case treated in [15].

For a given 7 = 7,, we must show the nonexistence of the complex eigenvalues in
C,., for the SLEP equation (see (3.96) and (3.70)):

(1) g(A;O, To, C*)=23<—70A—G(A;To, C*)=0'
The strategy is that we consider the following modified equation of (1):
) F; 1) =8~ = G(A; 10, ¢*) =0,

namely, the coefficient of the second term of (1) is not fixed to be 7, and all the
remaining terms are exactly the same as before. We study the behavior of the solutions
of (2) when 7 varies in R, , and prove the lemma by contradiction. For this purpose,
we prepare four lemmas, the proofs of which will be given in the last part. First it
follows from Lemma 3.8 that A =0 is always a solution of (2) and there exists a unique
value 7= 7, (which depends on 7,) such that the straight line f & — 7.\ is tangent to the
convex curve G(A; 7o, c*) at A =0. The first lemma describes the behavior of solutions
of (2) near (7, A) = (7., 0) as follows.

LemMA Al. Equation (2) has exactly two solutions near (7, A) = (7., 0). One is the
zero solution (A =0), which is independent of =, and the other is the real solution A = A(7)
with A(7.) =0, which behaves, near T = 7., as does

(3) Mr)==Cr(r-1.)
where Cy is a positive constant given by

1
K (K 3§80, 80)°

Cr

Besides the zero solution, A\(7) is a unique zero of (2) in an appropriate complex
neighborhood of A = 0.

Remark Al. When 7 # 7., it holds that 8%/aA (A(7); 7) # 0 at the unique nonzero
real solution A = A(7) of (2).

The next lemma shows the uniqueness of solutions of (2) on the imaginary axis.

LeMMA A2. Suppose there exists a solution of (2) that crosses the imaginary axis
when 7 varies. Then it must be a real one and must coincide with the solution A(t) in
Lemma Al. Therefore, there are no complex solutions with Im-part # 0 that cross the
imaginary axis.

The following lemma shows that a complex solution of (2) can always be extended
uniquely as a function of r.
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LeEMMA A3. Let (A, 7,) be a solution of (2) in Cz;xR.. If Im A, # 0, then it holds
that

~

0F
Y (/\‘, T)#O.

Finally, the next lemma shows the nonexistence of solutions of (2) for large 7.

LeMMA A4. There exist positive constants 7, and u, such that there are no solutions
of (2) in C,, for 7= 7, except the simple zero solution.

Now we are ready to prove Lemma 3.7 by contradiction. Suppose that Lemma
3.7 is not true; then we can find a nonreal solution Ay(7,) of (1) with Re (Aq(7)) = 0.
Here we use the fact that A =0 is not an accumulation point of solutions of (1), which
can be easily checked by using the properties of G (see Lemma 3.8) and the proof of
Lemma Al. Note that 7, must be strictly smaller than 7, in Lemma A4. Regarding
Ao(7o) as a special solution of (2) for =7y, we trace its behavior when 7 varies. We
denote by Ao(7) the solution of (2), which is a continuation of Ay(7,) as 7 varies. In
view of Lemma A3, Aq(7,) is uniquely continued as far as it remains a nonreal solution.
When 7 increases, we see from Lemma A4 that Ao(7) must cross the imaginary axis
before 7 reaches 7,. However, owing to Lemma A2, Ay(7) cannot cross the imaginary
axis. Therefore Ao(7) must fall into the real solution of (2) before it reaches the
imaginary axis. But we see from Lemma Al and Remark A1 that this is not possible,
which is a contradiction and completes the proof.

Proof of Lemma Al. It is clear from Lemma 3.8(i) that A =0 is always a solution
of (2) independent of 7. Therefore, since ¥ is analytic with respect to A, & can be
rewritten locally near A =0 in the following form:

(4) F;r)=AH0; 1)

where H is a smooth function with respect to all variables. After some computation,
we obtain

g ,,
®) T (03 7) = —2KH(RE) 8y, 89 <0.

Since 6°%/aA%(0; 7.) =2 8H/aA (0, 7,), it follows from (5) that
oH .
(6) Y (0 7.) = —k*((K&™")*8,, 80y <0.

This implies via the Implicit Function Theorem that H =0 has a unique solution

A =A(7) in an appropriate complex neighborhood of A =0 with A(7.) = 0. It also holds
that

di(7) __61:1/6)7'(0; Te) _ 1

7 = ~ = *
(7) dr |, 0H/oA(0;7) KN(KE™)8, 80)

which completes the proof of Lemma Al.
Proof of Lemma A2. We will show that the origin (A =0) is the unique solution
on the imaginary axis of (2). The real and imaginary parts of (2) are given by

(8)a $E— A= A(Ag, (A;)?) =0,
(8)b B(/\R,(/\I)z)"'7'=0
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where A =Ag+iA;, and A and B are smooth functions of Ax (>—4) and (A;)*=0
defined by

9)a AAg, (A1)) = K¥(IK, 86, 80,
N B(Ag, (Ar)?) = K*(IK3 80, 80).
Here K, ,:(H})* > H,, is the inverse operator of

d’ d det*
T ==t - ; +Ar and T={I+(A)’K3 )" H,~> H}.

The following results are useful, the proofs of which are left to the reader (see also
Lemma 3.2 of Nishiura and Mimura [15]).
SuBLEMMA Al.

A oB
i) ——<0 d ——<0
@ So2=0 ™ 50

(ii) lim A=0 and lim B=0,

[Aflte0 [A1 o0

9B .
(il) —<0 for x> —f,
AR

() BAr,0)= === A(he, 0).

Let us set Ax =0 in (8) and B,= B(0,0). It follows from Sublemma A1(i) that
(8), can be solved uniquely with respect to (A;)* as a function of 7 for 7= B,. We
denote it by (A;)*(7). Note that (A;)*(7) is a strictly decreasing function of 7 with
(A1)*(Bo) =0 and lim,_, (A;)*(7) = +00. Substituting this into (8),, we have a scalar
equation of 7 (=B,):

(10) {E— A0, (A7) =0.

In view of Sublemma A1(i), we see that A(0, (A;)*(7)) is a strictly monotone increasing
function of 7. Therefore (10) has a unique solution, if it exists. On the other hand, we
already know that A =0 is a special solution of (8) coming from the translation
invariance, which shows that 7= B, is a unique zero of (10). Thus, all the eigenvalues
that cross the imaginary axis must go through the origin. Recalling the local uniqueness
of the zero solution of (2) in some complex neighborhood (see Lemma Al), we see
that A(7) is the unique solution of (2) which crosses the imaginary axis as 7 varies.

Proof of Lemma A3. This can be done in the spirit of the proof of Proposition
3.1 of Nishiura and Mimura [15]. So we leave the details to the reader.

Proof of Lemma A4. First note that, from Sublemma A1(i) and (iii), B is a strictly
decreasing function Ag and (A;)’. Let 7,= B(—i/2, 0). Then, in view of (8),, we see
that there are no complex eigenvalues in the region Re A = —u,/2 for 7= 7,. Recalling
Sublemma A1(iv) and A(Ag, 0) = G(Ag;70, c*) (see (3.70)), we see that —, is the slope
of the convex curve G(A; 7o, c*) at A = —[i /2. A simple geometric consideration implies
that there are no real eigenvalues A satisfying A = —/i/2 for 7= 7,. Combining these
results, we can conclude Lemma A4 with —u, =max {—u,/2, —8.} for 7=7, (see
Proposition 3.1 for the definition of §,).
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TRAVELLING WAVE SOLUTIONS TO A SEMILINEAR
DIFFUSION SYSTEM*

J. ESQUINAST AND M. A. HERRERO*t

Abstract. This paper considers the semilinear system

u,—u, +ovP =0,

(S) v, —v tu?=0,
—00 < x < +00, t>0

with p>0 and ¢ >0, and looks for nonnegative and nontrivial travelling wave solutions to (S): u(x, t)=
e(ct—x), v(x, t) = y(ct — x) possessing sharp fronts, i.e., such that ¢(£) = ¥(£) =0 for £ = &, and some finite
&y, which after a phase shift can always be assumed to be located at the origin. These solutions are called
finite travelling waves (FTW). Here it is shown that if pg <1, for any real c there exists an FTW that is
unique up to phase translations and unbounded, whereas no FTW exists if pg= 1. The asymptotic wave
profiles near the front as well as far from it are also determined.

Key words. semilinear diffusion systems, travelling waves, fronts, asymptotic behaviour

AMS(MOS) subject classifications. 35K55, 35K57, 35R35

1. Introduction. In this paper we will consider the system
U, — Uy + 07 =0,
(11) Ut_vxx+uq=0a
—0<x < +00, t>0

where p and q are positive real numbers. More precisely, we are interested in the
existence of nonnegative finite travelling waves (FTW). By a travelling wave of (1.1)
with speed ¢ we mean a solution (u(x, t), v(x, t)) defined in

S={(x, t): —co< x <400, t >0}
of the form
(1.2) u(x, t)=¢(ct—x), v(x, t)=d(ct—x)

where ¢(¢) and (&) are nonnegative and different from zero, ¢, € €*(—0, +00),
and ¢(&), ¥(£)—>0 as £-> —o0 and are nondecreasing in & Here ¢ and ¢ are the
respective wave profiles, and ¢ may be any real number. If ¢ (§¢) = ¢(£) =0 when £= &,
for some real & we say that (u, v) is a finite travelling wave. In this case the line
x =ct— & is a front separating the region P.(u, v) ={(x, t): u>0, v> 0} from the one
where u = v =0. Clearly, P,(u, v) expands in time when ¢ >0 and recedes if ¢ <0, to
remain stationary for ¢ = 0. In the context of scalar heat conduction problems the two
first cases are referred to as the onset of heating and cooling waves, respectively.
There exists a wide literature on reaction-diffusion systems and their stationary
states (cf., for instance, [A], [S], and references therein), and, in particular, on the
existence of travelling waves to them (see [AW], [F], [FM], [BNS], [CL], [H], [T],
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PB86-0112-C0202.
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Madrid, Spain.
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and the references therein). Here we will concern ourselves with one of the simplest
cases of semilinear systems exhibiting a nontrivial coupling involving zeroth-order
terms, but the techniques employed extend to a wide class of diffusion-absorbing
problems. See in this context the remark at the end of § 4.

Let us proceed to describe our results. As the nonlinear terms v*, 4 are monotone
and unbounded for nonnegative values of u and v, no travelling wave can be expected
that connects zero to a positive constant state. Thus our FTW will be unbounded,
a fact already observed in nonlinear heat conduction problems in the scalar case
(cf. [M], [HV]). We first obtain a necessary and sufficient condition for FTW’s to exist
in terms of p and g, namely, Theorem 1 below.

THEOREM 1. There exist finite travelling wave solutions of (1.1) if and only if

(1.3) pg<1.

Moreover, if (1.3) holds, for any real c there exists an FTW moving with speed c, and
the corresponding wave profiles ¢ and  are unique up to translations in space and time.

We will assume henceforth that (1.3) holds, and proceed to derive the asymptotic
wave profiles near the front (which we may assume to be located at £ =ct —x=0) as
well as for large values of & To this end, we recall some notation. We say that f(§)
and g(¢) are equivalent as ¢ - & (finite or infinite), and write f(&) = g(€&) as ¢ &, if
limg. ., (f(£)/g(£€))=1. We then have Theorem 2.

THEOREM 2. Assume that pg<1 and for any real c, let (¢,y) be the FTW
propagating with speed ¢ obtained in Theorem 1. Then the following hold.

(i) For any real ¢, we have

(1.4) 0(£)=At* and p(¢) =~ BEP as £ 0", where
24y, 204
1-pq ’ 1-pq °
AP =((B(B-1)a(a—1)"", B=AYB(B-1))""
(ii) If ¢ <O, then
(1.5) 0 (&)= C¢&” and y(&) = DE® as £ > o0, where
1ty 14
1-pq’ 1-pq
C'™M=((~¢)"""8"y)™", D=C(~c)8)™"

Y

s

(iii) If ¢> 0, the asymptotics for £ > © depend on the values of p and q as follows:
(1.6a) Ifp<1,q<1then (&)=~ M, e“, y(¢)= N, e, where

1 M4

Mi-pa = , N. =—1;
' (c*(1-q))’c*(1-p) "(1-q)

(1.6b) Ifp<1,q=1 then ¢(&)= M, e, y(¢)= N,£ e, where

_ 1 [ _ M.
M, p:_pﬁj sP ecPs (g N,=—=;
c c

o 2
(1.6¢) Ifp<1,q>1 then ¢(&)=~ M; e, y(£) = N5 e, where

;~pq= 5 1 3 R N3=2Lg.
(c(g—1)g)"c*(1 - pq) c(q—1)gq
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Thecasesp>1,q<1andp>1, q=1 are obtained by changing the coefficients in (1.6b, c)
in an obvious way.

Let us remark briefly on the estimates above. First, when we look for solutions
of the form (1.2), (1.1) is reduced to an ordinary differential equation (ODE) system
in the variable ¢ = ct —x, namely,

(1.7) e"=co'tyf, Y=o+l

When ¢ =0 (i.e., in the case of stationary waves), (1.7) has an explicit solution given
by

(1.8) p(6)=A¢", Y(§)=BE’, a,B, A B,asin(1.4).

Therefore (1.4) shows that, regardless of the wave-speed c, the first-order asymptotics
of FTW’s near £=0 is precisely that of the stationary solutions (1.8). As for the
behaviour when £-> 00, consider beginning with the case ¢ <0 and try formally the
asymptotic expansion

e(E)=C&+- -+, Y(&)=D¢+---, £»0.
Substituting this into (1.7) yields
Cy(y=1)§" 2 =cCy&" '+ DPE"+- - -,
D&(5—1)¢>>=cD8¢* '+ CIg™ + - - -

so that, neglecting the terms on the left of (1.9) and matching those on the right, we
obtain the values listed in (1.5). We call the wave profiles thus determined to be of an
absorptive nature, since constants C, D, 8, y in (1.5) are those corresponding to the
explicit FTW solution of the simplified absorbing system obtained from (1.1) by
dropping the terms u,,, v, there.

When ¢>0 we expect the leading behaviour at infinity to be influenced indeed
by the heatlike part of (1.1). For instance, if p<1and g > 1, trying in (1.7) ¢(£) = Pe**
and (&)= Qe* leads to

(l.l()a) P[.Lz e“'f:CP/.L el"'f_l_ QP eP”‘f_l__ o
(1.10b) Qrle=cQue”™+Piert +. ...

(1.9)

Considering then the three terms in (1.10b) as of the same order yields » = uq, whereas
matching the first two in (1.10a) gives us u = c. We then obtain » = cq, u = ¢ and the
third term in (1.10a) is of lower order as £ > . These are the wave behaviours stated
in (1.6c), except for the coefficients P, Q, which remain to be obtained. A similar
analysis can be performed for the remaining cases, always yielding the exponential-like
estimates for ¢ and ¢ listed in (1.6). Because of the influence of the parabolic part of
(1.1), we call these behaviours of diffusive type, in contrast wih those obtained in (1.4),
(1.5).

As to the precedents of this paper, we should first mention the work [RK], where
the authors considered the general scalar equation

(1.11) u=a(u™)—bu”+k(u"),, a,m,n,b,p, k>0

and used formal perturbation theory (as in the remarks just made above), to describe
all the possible asymptotic behaviours of waves occurring in (1.11) in terms of the
different parameters therein. See also [PP], where the onset of FTW for another kind
of degenerate diffusion equation is analyzed in a similar way. Later, in [HV], a rigorous
justification of the results conjectured in [RK] was provided for the case k = 0; negative
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values of m and p were also allowed. The methods employed involve phase space and
comparison arguments. We have resorted to different techniques here, since the natural
phase space associated with (1.7) is four-dimensional, and therefore rather unwieldy.
Basically, existence is obtained by a fixed-point argument in whose formulation the
asymptotic behaviours predicted by perturbation theory play a crucial role (cf. § 3).
As to uniqueness, it follows from a general ODE argument as explained in § 2 below.

From the results in [RK] and [HV] it follows, in particular, that for the equation

(1.12) u=a(u")—bu’, a,b>0, mp>-1

only three asymptotic behaviours of FTW’s are possible, there named as absorptive,
diffusive, and stationary. These are illustrated by explicit solutions easily obtained by
dropping, respectively, the second, third, and first terms in (1.12) (cf. [HV, § 2]). In
particular, for the semilinear equation

(1.13) U — U +uf =0,

FTW’s u(x, t)=¢(ct—x) exist for positive values of p if and only if p<1. Their
behaviour is stationary (@(&) = A,£% '™ near the front £= ct —x =0, and absorptive
(e(&) = A,£Y'™P or diffusive (¢(£)=A;e®) as £- 00, according, respectively, to
whether ¢ <0 or ¢>0. Here A, and A,, are positive constants, A, depends on ¢ but
A, does not, and their explicit values are determined, for instance, by trying a formal
perturbation expansion. On the other hand,

1 (1/1-p)
A=—
} (cz(l—p)> ’

as can be seen by repeating the arguments in § 4 below. The reader will notice the
analogy between these results and the discussion following Theorems 1 and 2 above,
although several diffusive behaviours are possible for (1.1) depending on the values
of p and gq.

Higher-order wave asymptotics can also be obtained from our techniques. As an
example, we derive a two-term expansion for FTW’s near the fronts.

THEOREM 3. Let pq <1, and foranyrealcletu.(x, t) = ¢(ct —x), v.(x, t) = ¢(ct — x)
be the solution obtained in Theorems 1 and 2. Then, for ct — x positive and close enough
to zero,

(1.14) u(x, )= A(ct —x)*+ A, (ct —x)*" '+ -,
(1.15) v.(x, t) = B(ct—x)?+ By(ct —x)P*'+- - -
where A, B, a, B are as in Theorem 2 and

cA(p(a—1)+B+1)

. A= >
(1.16) (@+D)(B+1)—pq(B-D(a—1)
_cBB+4qATT'A,
(1.17) Bl_—ﬂ(ﬂ"'l)

Note that the wave-speed ¢, which is not reflected in the first-order approximation
near the front, does appear when second-order terms are considered.

We conclude this Introduction with the plan of the paper. Some preliminaries, as
well as uniqueness and nonexistence results, are gathered in § 2. Section 3 is devoted
to existence and asymptotics of cooling waves (¢ <0) under the necessary condition
pq <1. Section 4 covers the case ¢ > 0.
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2. Preliminaries. Nonexistence when pg=1. Uniqueness. A finite travelling wave to
(1.1) can be described as a nontrivial, nonnegative solution to the ODE system
¢, ¥ € C?[0, 0),
(2.1 @"(£)=co'(§) +y(£)" for >0,
Y'(§)=cy'(§) +(§)? foré>0

together with conditions

(2.2) e(§) = ()=y(§)=¢'(§)=0 foré=0.
If such a solution exists, the following representation formulas hold:
& ec(f"s) -1
@39) e@=] (v as
0
£ (oclé=9) _1q
(2.3b) P(§)= J (——C——> @(s)? ds,
0
3
(2.30) e'(§)= I e““ g (s)" ds,
0
3
(2.3d) Y€)= j etV (s5)? ds.
0

Indeed, (2.3¢, d) can be obtained just by differentiating in the first two equations above.
Now, substituting (2.3b) into (2.3a), we get

& c(é—t) t c(t—s) __ p
(2.4) ¢(g)=J (e 1)“ (e 1><p(s)qu] dr.
0 c 0 c

Therefore, finding FTW’s amounts to obtaining nontrivial solutions to the integral
equation (2.4).

We now state a nonexistence result.

LEMMA 2.1. There are no FTW’s when pq=1.

Proof. Letusshow that ¢(£&)=y¢(¢)=0if pg=1.1f p=1, and g = 1, the conclusion
follows at once from standard uniqueness results. As to the general case, we will argue
by contradiction. By (2.3c, d) both ¢ and ¢ are monotone nondecreasing, and once
they are different from zero they always stay positive. Without loss of generality, we
may then assume ¢(&€)>0, ¢(£)>0 for £>0. Then from (2.4) we deduce

(2.5) e(§)=e(§)™F(§)

where
& c(é—t) __ t c(t—s) _ p
o= (EZJ () ] o
0 c 0 [4

so that, in particular, F(£) -0 as £ 0. Now the contradiction follows, since by (2.5),
©(&)'77 should go to zero as £~ 0, which is impossible. O

Uniqueness up to phase shift is contained in the following lemma.

LEMMA 2.2. Suppose that (¢, ;) and (¢,, ¥,) are nontrivial solutions of (2.1),
(2.2). Then for some real n we have ¢,(¢) = ¢,(£—mn) and ¥,(£€) = ¢, (£—7).

Proof. The argument involves two steps.

(i) Any pair of different nontrivial solutions (¢, ;) and (¢,, i) is ordered, i.e.,

?1(8) < @x(§) and ¢1(€) <4(€) or ¢1(£)> @,(£) and ¢1(£) > Ya(¢) for £>0.
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Actually, it suffices to show the result for ¢, and ¢,, since the corresponding
statement for ¢, , then follows from (2.3b). To begin with, if supp ¢, < supp ¢, and

supp ¢, # supp ¢,, (2.3a,b) yield ¢,(£)> ¢,(¢) for all £>0. Therefore we have only
to deal with the case

©1(0) =93(0), ¢1(£)>0, ¢,(£)>0 forall ¢>0.
We then argue by contradiction as follows. Assume that there exists &,> 0 such that
¢1(&) = ¢2(&). Then there exists 7 >0 such that, for any ¢ =&,
@10 (€) = 92(8)

where
_ 0 if €=,
#1n(8) {«al(s— 0y ifEzm,

Note that for arbitrary n=0, (¢,(£), ¢,(£)) is a solution of (2.1) provided
(e(8), ¢(§))}S also. Now we set uo=inf{n>0: ¢1,n(§)§¢’2(§) for £= &} If wo>0,

there exists ¢ = u, such that
(Pl,p.o(g_) = (P2(§_)'

In this case we define

py=inf{£= & @1,u,(€) = 02(€)}.
Clearly, u;= uo>0. We would then have
(2.6) Prulé) <@a(§) If0<E<p,,
(2.7) ‘Pl,m(l‘«l) = ‘Pz(lh)

but in view of (2.3c) and (2.6), ¢ ., (1) <¢@2(m1), so that (2.7) cannot hold. Thus
mo=0and ¢,(£) = @,(¢) for all £= ¢&,. Interchanging the roles of ¢, and ¢, we deduce
01(€) = @,(¢) and the proof of (i) is complete.

(ii) Now let (¢,, ;) and (¢,, ¥,) be two nontrivial solutions of (2.1), (2.2).
Without loss of generality, we may assume ¢,(§) > ¢,(£) for £> 0. Since ¢, 0, there
exists n > 0 such that ¢, ,,(£) < ¢,(§) for £>0. Now set

no=inf {n: ¢, ,(£) < @o(£) for £> 0}.

If 1o=0, ¢,(£) = ¢,(£) so that we may assume 71o>0. Then ¢, 5(£) < ¢.(£) < @y,(£)
for any 8, & such that 0<e <7,<8& and £>0, and this implies that ¢,(&) = ¢, ,,(£).
The corresponding result for ¢, ¢, now follows from (2.3b). 0

3. Proofs of Theorems 1 and 2. The case ¢<0. From now on we assume pq <1
and look for a nontrivial solution to the integral equation for ¢ obtained in § 2, namely,

3 c(é=1) _ t c(t=s) _ p
av oo (Y[ () a]

To this end a fixed-point argument will be employed. We begin with the case ¢ <0,
an assumption to be retained throughout this section.
Let us consider a function h(¢) € €°[0, c0) N €*(0, ) such that h(£) >0 for £>0

and
1+
£ witha=%_—pl ife=<1,
(3.2) h(§) = 1 +pq
£ withB=—2>=  ifg=2.
1-pq
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Then (3.1) will be solved if we can find a function ¢ (&)= h(£)f(£) such that f(£)>0
for ¢>0, fe C?[0,), and f is a fixed point for the operator

& 7 e(e—1) _ t g e(t=s) _ 3
(3.3) (Tf)(§)=h(1§)J'0 (e " l)Uo(e . 1)(h(s)f(s))"ds] dt

in the Banach space
(3.4) E =((C[0, ©L; R), || [|)

defined as the space of continuous functions in the Alexandroftf compactified set [0, 0]
corresponding to the semiaxis [0, ), endowed with the supremum norm. We now
have Lemma 3.1.

LeEmMMA 3.1. T maps E into E. In particular, for any function f€ E,

_fy _ »
3.5) (Tf)(O)———M withM=((1+aq)(2+aq))’a(a-1),
3.6) (Tf)(0) =£(£§J—)— with N = (—c¢)""P(1+ Bq)"B

where f(©0) =lim,_ . f(x), and a, B are as in (3.2).
Proof. 1t suffices to show (3.5), (3.6). When £>0 is close to zero, we have

c(é—1) _
=(&—t) forO0=t=¢

f(&)=f£(0)
so that for £=0 (cf. (3.2), (3.3))

e

p

3 t
(TN(E)=¢* L (é-1) HO (t—s)s*f(0)7 ds] dt

3
= £ f(0)P(1+ aq) 2+ aq)) 7 I (- 1)@ gy

=£(0)"((1+ aq)(2aq)) "(a(a—1))"".
This gives (3.5). As for (3.6), we remark that since ¢ <0, we have, for fixed &> 1 and

§>>§0a
£/ e(e=1) _ t  e(t=s) _ »
(Tf)(f)zf-ﬂj (e ) ‘)U (e : l)s""f(s)"ds] dr
&o &o

ceoer [ (D] (2)ome]

whence comes the result. 0
LemmMmAa 3.2. T is continuous, and transforms bounded sets of E into bounded sets

of E. In particular, there holds
(3.7) 1T o=l A N2 TT||lw where I(¢)=1 forany £ 0.

The proof of this result is straightforward.

We want to show next that T transforms bounded sets into bounded and equicon-
tinuous sets, when restricted to a suitable domain K < E, which consists of those
functions f € E such that

(3.8a) f(€)=0 forany £€[0, 00);
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(3.8b)  [If o= kif(0), [ f = ks f(c0), where
ki =max (M| TI||x) """, 1), k;=max (N| TI||x)""~", 1),

M and N being the constants in (3.5), (3.6), and I being the constant
function in (3.7);
(3.8¢) For any £ >0 we have

(1-e)f(0)=f(x)=(1+2)f(0) ifx<8(e),
(1-e)f(0)=f(x)=(1+e)f(0) ifx>N(e)

where
— . — l—pq<w< 1-pq
8(e)=sup(x:(1—¢) =(TI)(0)=(1+8) ),
e (1 eyt-pa < (TD(X) _ 1-pq
N(g)=inf(x: (1—¢) =(T1)( )=(1+s) ).

We have thus defined a cone (i.e., a closed, convex set K in the Banach space E such
that (i) Afe K for any A =0 if fe K, and (ii) for any f€ E, f#0, at least one of the
functions f, (—f) does not lie in K). This set is nonempty, since both the trivial function
and I(x) in (3.7) are in K. We now have Lemma 3.3.

LemmAa 3.3. T(K)<c K.

Proof. Let fe K. It is clear that (Tf)(£) =0 for any £€[0, ). Furthermore, by
(3.5) and (3.8b)

1T e = 1A 1SN TT |0 = KE2F(0) || TI [loo = K§* M| TI || TS)(0)
so that we have || Tf ||« = k,(Tf)(0) as soon as we impose
ky = (M| TI ) /1779

Actually equality would suffice for our purposes at this point; however, the fact that
k,=1 will play a role in a later result. Similarly, we see that || Tf|| = k,( Tf)(0).

Now take x < 8(e) with 8(e) given in (3.8¢c) and use this last property applied to
S to get

(TN(E) =£(0)"(1+ )P (TI)(€)
so that by (3.5)

(TF)(E) =M1 +e)™(TI)(£)(T)(0)
= (1+&)™(TH)(&)((TI)(0)) " (Tf)(0)

and since (TI)(£)((TI)(0))"'=(1+¢)" " in the interval under consideration, the
conclusion follows. The corresponding estimate at infinity is arrived at
analogously. 0

LemmMma 3.4. T transforms bounded sets in K into bounded and equicontinuous sets
in K.

Proof. The first statement in the lemma has already been listed in Lemma 3.2. On
the other hand, proving equicontinuity away from ¢=0 and ¢=+00 is immediate:
actually, it is not necessary to restrict T to the cone K at this stage. As for the cases
£=0, +00, they follow at once from (3.8¢c) since TK < K. 0
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Let us summarize. So far, we have shown that T given in (3.3) is a bounded,
completely continuous operator that maps the cone K defined in (3.8) into itself. By
the classical Schauder Theorem (cf, for instance, [K]), T has at least a fixed point
f(&). This is not enough, however, since f(£) may vanish identically. Our next step is
then Lemma 3.5.

LemMMA 3.5. T has a nontrivial fixed point in K.

Proof. For n=1,2,- - we define

I
T.(f)= T(fﬂ“;)
where I(x) is given in (3.7). Now, since k, =1 and k, = 1, the function f+ I/n belongs

to K provided that f€ K, and it is easy to see that for any fixed n, T, is a nonnegative,
bounded, and completely continuous operator from K into K. Furthermore, since

1
|| TT||co = min (TI(0), TI(0)) = mln(M N)_a°>0’
we have
T > I > %o
3.9) ITflez | T— _Ew0

Then a variant of Schauder’s theorem (cf. [K, p. 242]) states that for any ry> 0, there
exist A,,>0 and g, € K such that

(3.10) 1.8, = An&n,
(3.11) lgnllo=ro
Write w, = (A,)”". It then follows from (3.9) that

88) = 1 Tga(O) = T (80 + 1) = ,7(12)

whence

(&) = 1n T (€) = paT (g"(§)+ (f)) T (2(8))

= ,LL,.T(/.L,,T(%)) — M:.+pqn—(pq)2TZI(f)-

Iterating (3.12), we deduce that for any m=1, 2,
g (€)= (uy P70 TP T ()

(3.12)

so that
(3.13) to= g o Z (P00 prs O T
On the other hand, by (3.5)

IT 1= I TCI e T ) = T(57) = (M)

Thus for any m=1
(314) ” T'"‘HI”oog(M1+pq+...+(pq)m)_l.
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Putting together (3.13) and (3.14) we get
= > 1+pg+---+(pg)™\—1_,—pq‘™*D 1+pg+---+(pq)™
(3.15) ro=||gnllo= (M ) 'n (kn )-
We now let m -0 in (3.15) for fixed n. As pq <1, this gives
g
(3.16) ro= (M(l/(l—pq)))—lu(nl/(l—m))'

The next step consists of passing to the limit in (3.10). By (3.11), the sequence
{g.+1I/n},n=1,2, - is bounded. As T is completely continuous, we have that, up
to a subsequence also labelled with n,

I
(3.17) T(g,,+;)->g asn->o

for some ge K with 0<| gl <co. On the other hand, by (3.16) and again up to a
subsequence, we get

(3.18) M > fo<CO as n-> 0o,

Now from (3.10), (3.17), and (3.18) we conclude that, along a suitable subsequence,
(3.19) gn—> Mog as n->o0.

Therefore, using (3.17) and (3.19), we get

1
¢=lim T(g,,+;) — lim T(gn) = T(og),

n-»o0
ie.,

g =T(uog)=ub"T(g)

and then the function f= u, ?9/~?Pg is the required fixed point, since it satisfies
f=T1f ]

Note that, since ||f]l#0, it follows from (3.8c) that f(0) and f(c0) are both
positive. In particular, from (3.5), (3.6) we conclude that f(0)' 7= M"", f(c0)' P =
N~! with M, N as in Lemma 3.1. This gives the asymptotic estimates corresponding
to ¢ (1.4), (1.5) of Theorem 2. Those corresponding to ¢ follow, for instance, from
(2.3b). a

4. The case ¢>0. Our next step consists in obtaining the corresponding results
for expanding waves, i.e., for the case ¢>0. Since the arguments very much parallel
those in § 3, we just stress the new relevant points and sketch the rest of the proof. To
begin with, instead of h(£) in (3.2) we consider three positive functions z;(¢) € €*[0, ),
i=1,2,3 such that z;(¢) = ¢ with @ =2(1+p)/(1—pq) if £=1 and

e ifgz2, i=1,
(4.1) z(&)={ €e” ifEz2, i=2,
e ifez2, i=3.

We now define nonnegative operators T;, acting on E (cf. (3.4)) as follows:

£ [ oclé=t) _ t g c(t—s) _ p
(Ti,qf)(§)=z‘(1§)J‘0 (e p 1>[j0(—e p 1)z?(s)f(s)‘lds] dt

where i=1if p<1,i=2if p=1, and i=3 if p> 1. Then we have Lemma 4.1.
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LEMMA 4.1. T, maps E into E for i=1,2,3. In particular, for any f€ E,

(4.2) (T; 4 £)(0) =f(1(3pq with M given in (3.5) and i=1,2,3,
1 )

(433) (Tl,qf)(w) =f(CD) (Cz(l_q))pc2(1_p) lfq<1,

(43b) (Tl o) =0y o [ or etr=bas ipq=1,

(43¢) (T, f)(0) = f(0)™ : ifg>1.

(c*(g—1)q)"c*(1-pq)
Proof. Condition (4.2) has already been obtained in (3.5). As for (4.3), we note

that since
& ec(f—l)_l ecq'f ecf 1
(£ grgm 1
0 c c’q(g—1) c(g—-1) c’q

we have for ¢ >0

( o Pt ]
@a-gp 4=h
3 c(§—1) _ P P ,cPé
(4.4) U ("’—Cl) et dt] ~{¢ cf, ifq=1,
(4]
eCP‘If
————  ifg>1,
((Paq-D)yr "1
and then (4.3) follows by elementary calculus. 0

To conclude the proof of Theorem 2, it suffices to repeat the fixed-point arguments
in § 3 with some obvious modifications. In particular, for p <1 operators T, , are to
be considered as acting on the cones K;,, obtained by replacing (TT) by (T, ,I) in
(3.8). 0

Proof of Theorem 3. 1t will suffice to obtain (1.14) and (1.16), since the correspond-
ing results for v.(x, t) are similar. To proceed, we recall that in Theorem 2 we have
shown that

(4.5) (&) =¢&°f(€) forg>0, £=~0

where

(4.6) (&) =(T)(§),

T being the operator defined in (3.3), (3.4). Since f(¢) € €%, we have that
(4.7) SO =F0)+f(0)¢+0(£) as¢=~0,

whence

8) A=F©)= lim (i«rf)(g)—A)).
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To compute A, we expand the quantity in the braces above up to second-order terms
and then pass to the limit. For t=~0, we compute

t c(t—s) _
J' (e—c_l) Saqf(S)q dS

=~ J: ((t—s)+'2€(t—s)2) s""A"<l+éAl—§)q ds

=~ Jt ((t—s)+—26-. (t—s)2) s“1(A%+qA'A)) ds

0

AP tPTATT O cA

e o)
B(B-1) B(B+1) \B-1

where B is given in (1.4). It then follows that

3 eC(f—t)_l t et(t—S)_l o . p
L) s a]

_ qué_-a N qufa-i-l
(B(B—1)fa(a—1) (B(B—1))a(a+1)
' (C(p(a ~D+B+1) pgAT AN(B - 1))
(e—1)(B+1) B+1
so that, taking into account (1.4), we conclude that for £>0, £=0,
Ac(p(a—-1)+B+1)+pgA(a—1)(B 1)
(a+1)(B+1) )

The results follow from (4.8) and (4.9). 0

We conclude with a few remarks. First we observe that, for the waves (u,, v.)
obtained previously, we have

(4.10) lim (w) =—c

ct—x->0" auc(ct—x)/ax >

(49) é((Tf)(ﬁ) —A)=

which is the equation satisfied at the front of u,. Indeed, a similar result holds for v,.
Note that relation (4.10) can be arrived at in a formal way as follows. For ¢ > 0, write
x.(t) to denote the level line u(x,(t), t) = e. Then differentiating with respect to ¢ yields

du dx, | du

ax dt 9t

b

which, if we let ¢ >0, suggest the following equation for the level line x,(¢), where
u(xq(t),t)=0:

_@@ ou/at

dt du/ax

where the quantity on the right is computed at the curve x,(t). This is precisely (4.10)
in the case of waves (u,, v.).

Next we consider the limit case pg = 1. We already know that there are no FTW’s
in this case. However, travelling waves exist, although they are not unique. More
precisely, we have Lemma 4.2.
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LeEMMA 4.2. Assume pq=1. Then for any real c there exist 6 >0, y > max (0, ¢)
such that, for any P> 0,

q ,xé
o(&)=Pe%,  y(&)="L"—
x(x—c)

is a monoparametric family of solutions to (1.7) satisfying
?(£), P(§)>0 as¢->oo,
®(£), ¥(£)>0 as¢->—co.
Proof. We just try ¢ = Pe®, ¢y = Q e** in (1.7). This leads to
PO(0—c) e = Q" e,
(4.11)
Qx(x—c) e =P ™

where we impose
(4.12) 0 = xp, x = 0q.

Note that this yields no further information on 6 or y, since pq=1. Matching the
corresponding coefficients in (4.11), we get P8(6—c)= Q”, Qx(x —¢) = P? whence

PY )" _ P
x(x—c¢) (x(x —¢))*?

PO(0—c)= (
and using (4.12) we deduce

xp(xp—c)(x(x —¢))’=1.

When p=gq=1 this reads x*(x—c)*=1, which always has a positive solution for
x = max (0, ¢). As to the general case, we may assume, for instance, that p>1, and
then F,(x)=xp(xp—c)(x(x—c))” also has a positive root for y =Zmax (0, c). The
corresponding values of 8 are then obtained by (4.12), and for fixed P > 0 the associated
Q= Q(P) is determined from (4.11). 0

As a final remark, we observe that the methods in this paper apply to other types
of semilinear diffusion-absorption systems. For instance, consider the following
example:

U, — Uy +(uv)? =0,
(4.13) U, — Vg +(u0)7=0,
—00< x <00, t>0, p,q>0.

Searching for waves u.(x, t) = ¢(ct —x), v.(x, t) = ¢(ct —x) in (4.13) we are led to the
ODE system

(4.14) " =co'+(p¥)", " =cy'+ (o).
Now the analogue to (1.3), i.e., the condition for FTW’s to exist, is
ptqg<l.

As before, formal perturbation methods suggest the asymptotic behaviour of the waves.
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For instance, in the case ¢ <0, we have

A witha,=20=94P) ey
(&)~ 1-(p+gq)
I A ife»o,

B,&* withﬁ,=21—(i—z%q)) if £~0,
W(E) = P4

B,£P? if %0

where A,, A,, B, B, are positive constants depending on p and 4.
Results corresponding to Theorems 1-3 can now be proved with some minor
modifications. We just mention that, because of the structure of (4.14), it is convenient

to get the fixed-point argument for the variable z(£) = @ (£)y(£), for which the formula
analogous to (2.4) reads

£ [ ocE—0) £ foc(é—0)
o= [ (=)o a][ [ (=) 04
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SPATIALLY OSCILLATORY STEADY STATES OF
TUBULAR CHEMICAL REACTORS*

ROGER ALEXANDERT

Abstract. The equations governing the nonadiabatic tubular chemical reactor have as many low-
conversion steady-state solutions as are wanted, if the coefficient of heat transfer from reactor to cooling
jacket is sufficiently large, and if the activation energy is large. These steady states exhibit no reaction zone:
temperature and reactant concentration do not deviate much from their inlet values. The temperature profiles
are oscillatory in these steady states; the most oscillatory profile can be computed by the method of averaging.

Key words. chemical reactors, multiple steady states, averaging method

AMS(MOS) subject classifications. 80A32, 34B15

1. Introduction. In this paper we show that the axial dispersion model of the
nonadiabatic tubular reactor can have arbitrarily many steady states, provided that
two constants occurring in the governing equations are sufficiently large.

The steady states of the reactor are solutions of a boundary value problem for
the temperature T and reacting species concentration C. In these equations the reactor

length has been normalized to unity. Constants H, M, B, D, B, y are explained below.
The equations are:

1
G '~ T'-B(T-1)+BDCe™T=0, 0<x<I,

T'-H(T-1)=0, x=0,

(L1) T =0, x=1,
ﬁC”—C’—De'WTC=O, 0<x<l,

C'-M(C-1)=0, x=0,

C'=0, x=1.

Consult [VA] for a detailed derivation, or [A2] for an explanatory sketch; here we
merely indicate the meaning of the parameters:

H, M—Péclet numbers for heat and mass, respectively,

B—-coeflicient of heat transfer between reactor tube and cooling jacket,

B—heat release of chemical reaction,

D—Damkohler number,

y—activation energy.

As far as the author knows, no one has proved that (1.1) can have more than
three solutions. However, formal asymptotic methods and numerical bifurcation analy-
sis have made it “well known” that there can be up to seven steady states when the
activation energy is large. This result, and the difficulties the equations pose for a
rigorous analysis, are discussed in the survey [A2].

* Received by the editors June 6, 1988; accepted for publication February 27, 1989. This research was
supported by Air Force Office of Scientific Research grant 84-0252 and Air Force Systems Command grant
88-0031. The United States Government is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright notation therein.

t Department of Mathematics, Iowa State University, Ames, Iowa 50011.

137



138 ROGER ALEXANDER

Kapila and Poore [KP] have constructed formal asymptotic solutions to (1.1). We
are interested here in one of the types of solution described by them, the ‘“‘low-
conversion” steady state. Such a solution exhibits no “reaction zone”’; instead T and
C remain close to their inlet values throughout the reactor.

In this paper we show that (1.1) can have an arbitrary number of low-conversion
steady-state solutions, provided that the reactor parameters are in a suitable range.
These solutions exhibit temperature profiles in the form of oscillations that grow slowly
in amplitude as the reactor is traversed from inlet to outlet. Note that these solutions
occur in addition to the six other types of steady states, identified by Kapila and Poore,
that may be present.

This paper extends previous work of the author [A1] in two crucial respects. First,
in [A1] multiple solutions are found for an approximating equation—what is called
here the “decoupled equation” for the temperature.

Here we derive the same multiplicity results for the original equation (1.1) as for
the decoupled equation.

The second improvement over [A1] is the use of the method of averaging to obtain
a more precise count of the number of solutions. In the previous paper, a simple
differential inequality is used to give a lower bound on solution multiplicity.

Formally, the limit y - 00 yields the “nonreacting” solution: T = C =1 everywhere.
We take vy finite but large, and use it as a microscope to find ‘“low-conversion™
solutions—solutions with T and C near 1 throughout the reactor.

Into (1.1) we substitute

T=1+y'y, C=1+y7"'z, D=y 'Ae”

to obtain an equivalent boundary problem for (y, z):

(1.2) %y"—y'—ﬁy+m(1+y‘lz)exp[1—+);_—,y]=0, 0<x<l,
(1.20) y'—Hy=0 atx=0,

(1.2y) y'=0 atx=1,

(1.3) %z”—z’*y_‘)t exp [#;]z=)\ exp [ﬁ], 0<x<l1,
(1.30) Z’-Mz=0 atx=0,

(1.3, zZ’=0 atx=1.

In (1.3), z is the solution of a linear boundary problem with coefficients depending
on y. On the other hand, we expect z to influence y only weakly, for it appears
multiplied by y~! in the equation for y, and v is large.

It is worth emphasizing that (1.2)-(1.3) are equivalent to the original system of
(1.1)—they do not represent the first term in an expansion in inverse powers of y.

Replace the coefficient (1+y~'z) in (1.2) by 1 to obtain the “‘decoupled equation”
for y:

1 y
" + BA —— | =0 0<x<1
7Y By exp [1+ y_ly] R x<1,

(1.4) y'—Hy=0 atx=0,
y'=0 atx=1.
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In § 2 we study this problem. We show that it has many solutions when B is large and
y~'B is small. We establish the oscillatory character of those solutions and derive
bounds on them. Phase-plane methods have been used before to investigate multiple
steady states (see [MA]). In § 3 we return to the coupled problem, and show that to
each solution y of (1.4) corresponds a solution (y, z) of (1.2)-(1.3) with y near y;
moreover, distinct solutions of (1.4) yield distinct solutions of (1.2)-(1.3). Section 4
summarizes some further points and unanswered questions. Some calculations are
relegated to the Appendices.

2. The decoupled y-equation. Begin by writing (1.4) as a boundary value problem
for a first-order system. Let

!

=y V2=y.
This gives
(2.1) Yi=Y2, yé=H{y2+ﬂy1—B/\ exp [ﬁ]}
and the boundary conditions
(2.2) ¥2(0) — Hy(0) =0, y2(1)=0.

Let the parameters H, B, A be fixed in what follows. It is shown in Appendix A that
if B/BA>e and y 'B is small, then the system of (2.1) has three critical points
(ylay2)=(aja 0)9j=09 192:

BA -
ao=F+0(B %,
B B
= a, =log—+log log —+
a=a=log log g 5y o(1),

a, =% e’(1+0(y* e™)).

The critical points (a,, 0) and (a,, 0) are always saddles. We will write a for a;—this
is the pivot of our analysis. Appendix A shows as well that the critical point (a, 0) is
an unstable spiral point provided

a

m>l+ﬁ (a=a).

This condition holds when B8~' and y '8 are small enough, for any fixed choice of
H, B, and A.

Let us write y(x; n):=(y,(x; 1), y2(x; )7 for the solution of the differential
equations (2.1) subject to the initial conditions

y»(0)=m,  y:(0)=Hn.

This y satisfies the first boundary condition of (2.2). It remains to determine 7 so that

the second boundary condition of (2.2), y,(1; ) =0, is satisfied. We show that there
are many such 7.

Keeping in mind the geometry of trajectories near the spiral point, use the rule

y2(x; m)

é(x; mn) =arctan
nx;n)—a
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to determine depending continuously on both variables x =0, n =0, understanding
that

T= 6(0; n)=0.

Solutions of the decoupled equation and boundary conditions correspond to values
of m for which

0(1; n)=km, keZ.
It is easy to see from the vector field that
(2.3) 6(1;0)> .

We will establish Lemma 2.1.

LEMMA 2.1. There are numbers 7 and Y witha <7 <Y = a +loglogvB/BA +0(1)
such that

é(l; n)> —a.

The bulk of this section is devoted to the proof of the next lemma.
LEMMA 2.2. There is a number n* with 0<n* <4 such that

0(1;n*)<—w+0(1), w~(Blogp)">

The multiplicity result then follows directly from (2.3) and Lemmata 2.1 and 2.2
by an application of the continuous dependence of solutions on initial conditions and
the Intermediate Value Theorem.

THEOREM. Let N be the greatest integer less than w/w. Then for each integer
k=1,0,—1,---,—N there is a number n) satisfying

0<mi<n*,  6(1; i) =km;
for each integer k=—1,-2, -, —N there is a number nj, satisfying
n*<mi<#@, 61 n)=km
Since @ may be made arbitrarily large by making ' and y 'S small, the
decoupled equation (2.1) with boundary conditions (2.2) can have an arbitrary, finite
number of solutions.
This is the argument of [A1l], refined so as not to give away half the solutions.

The proof of Lemma 2.1 yields the following corollary.
CoROLLARY TO LEMMA 2.1. There is a constant independent of B, vy such that

“m)|=
max | ¥1(x; )| = const Y.

0=n=7q

This bound will be useful in the construction of solutions of the coupled equations
in § 3.

Finally, we note that [A1] works with the simplified nonlinear reaction rate e”
instead of the “exact” form exp[y/(1+ vy 'y)]. This makes no essential difference
because v is large and the argument y is restricted to the range 0=y=Y.

Proof of Lemma 2.1 and its corollary. We will determine Y > « such that the right
branch of the stable manifold of the saddle (a,, 0) crosses the y,-axis between (a, 0)
and (Y, 0). Inspection of the vector field and uniqueness of solutions then shows that
y2(x; Y) decreases monotonically to zero and remains negative thereafter. This proves
the result.
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To determine Y, consider the conservative system

(2.4) Yi=y2, yg:Hﬂ()’l_ﬂexPr Y1_1 ])
B L1+y »

Define the potential V by

B, h
—V'(y)=HB(y—fexp [# ) V(0)=0.

Consider the Hamiltonian function

K(y1,y2) =33+ V().
Differentiation along a solution of (2.1) yields

d
EK(J’l,J’z):HJ’g%O

with the inequality being strict everywhere but on the y,-axis.
The level curve

(2.5) K(y1,y2)=K(ao,0)

is a saddle-loop for the conservative system (2.4). We have Proposition 2.1.

ProrosiTiON 2.1. K is a Lyapunov function for the system (2.1), run backward in
x. Every point inside the saddle-loop (2.5) tends under (2.1) to the spiral (a, 0) as x > —00.
In particular, the right branch of the stable manifold of the saddle (a,,0) spirals into
(a, 0) as x » —00.

Proof [H]. If we call (Y,0) the vertex of the saddle-loop equation (2.5) for the
conservative system, then the right branch of the stable manifold of the saddle («,, 0)
first crosses the y, axis for negative x at a point between (a,0) and (Y,0). The
approximation to Y is computed in Appendix B. There we show that

Y=log—1%+210g log—I%—log 2+0(1)

=a+loglogvB/BA+o(1).

If we follow the right branch of the stable manifold of the saddle backward in x
beyond its crossing of the y,-axis we find its first crossing of the line of initial conditions
at a point we will call (1, H7). Note that < Y.

Proof of Lemma 2.2. To begin, change to local coordinates about the spiral point
(e, 0). Appendix C gives the boundary problem (2.1), (2.2) in terms of new variables
(uy, uy):

ull _[H/2 o u, 0
(26) (u£> - [ -w H/2](u2) * QwN(u’)(l) ’
27) u(0) = 2w+ 22, (1) =~ (1),
2w w 2w

In these equations the parameters w and Q satisfy
w~VBlogB, Q~1

when 87! and y~'B are small. The nonlinear function N satisfies N(0) = N'(0)=0.
What makes this problem interesting is that the coefficient of the nonlinear term
is large while the neighborhood of the origin in which we need a good approximate
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solution is small: we will see that unlimited multiplicity of solutions is tied to w - o0,

but w is the coefficient of the nonlinear term of (2.6).
Introduce the polar coordinates

u; =r cos 0, u,=rsin 6.

Equation (2.6) becomes

H
r'=5-r—Qw sin 6 N(r cos 8),

0’=—w(1+MN(r cos 0)).
r

The boundary conditions, expressed in terms of the angle

y=tan"' (H/2w),

r(0)=H%csc(0(0)—d/)/\/1+(2Lj;)2,
H

tan 6(1) = —tan ¢ = ~re
w

(2.8)

are
(2.9)

We seek the initial point of the trajectory that wraps around the spiral point the
maximum number of times, starting from the line of initial conditions (2.9). Change
dependent and independent variables by

t = wx; write “-” for —;
’ dt

R()=0'"?r(t/w), O(t)=0(t/w).

This change of variables makes (2.8) into

. H
R =5 R—Qu'?sin® N(w "?R cos ©),
w

1/2
_®'"Qcos O N
R

0=-1 (@ 2R cos 0).

Finally, the substitution ©(¢)=¢(t)—t puts the equation into a form suitable for
averaging:

. H
R =5 R-—0"?Qsin (¢ —t)N(w ?R cos (¢ — 1)),
(2.10)
¢=—w"? % cos (¢ —t)N(w™?>R cos (¢ — t)).

The boundary conditions are

H a
R(0)= IIRE cse (¢(0) — ),

2.11) ”(2_:»)
tan (¢(w) —w)+tan ¢ =0.
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For the averaging computation, we expand (2.10) in powers of ™"/
(R,¢) =0 ?f(4, R, @)+ 'g(t, R, @)+ 0™>’p(t, R, ¢, 0™ '/?).

The analytical forms of f, g, p are computed in Appendix D. Each of f, g, p is 2#-periodic
in t, and the time-average of f is zero:

f°(R,<p)=j "f(t,R,tp) dt=0.

This fortunate cancellation allows us to compute an approximate solution valid (i.e.,
with error O(w~"/?)) for 0= t = w, that is, for the entire interval 0= x = 1. This follows
from Theorem 3.9.1 of [SV]. It is shown in Appendix D that the solution of (2.10)
with the initial condition (2.11) is approximated to within an error of O(w~"?) for
0=t= w by the solution of

dR  _ H_ .

i 2R, R(0) = R(0),
(2.12)

dé_ _ipm2 = (0) —

(E is a constant defined by (D4).)
Solve these equations, using the given initial conditions, to find

R(w)=e""?R(0)+ O(w™"?),
e(w)=¢(w)+0(w™"?)

H 2 osc? (e(0) =)+ O(w™V?).

=(,D(0)+E(€H—l) m -

Undoing the substitutions then gives, for the solution of (2.8) subject to initial conditions
(2.9),

= Hﬂ#ﬁ 9(0)— O(w™V?
- Heoi=e mwcsc(() ¥)+O0(w™"?),
8ls1=06(0)~w L (G ) (6(0) —¢)+ O(w™ ).

1+ (H/20w)* o

This approximation is valid as long as r(0)= O(w™"?). If we choose 6(0) to
minimize the leading terms in this approximation to 6(1) we find that

w-s+0[(2)’]

2\ 1/3
min (1) =-w+ O [(%—) ] +O0(w™"?).

gives the approximation

For this choice of 8 we have
al/2)
0)=0|—=
r(0) (wz/g,

so that the approximation is valid.
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This says that the trajectory, which starts on the line of initial conditions with
0(0)=6,,;,, winds [w/27] times clockwise around the spiral point. In the original
coordinate system (y,, y,) this corresponds to a point n* with the property asserted
in the statement of Lemma 2.2.

3. The coupled equations. Now we show that the multiplicity results of § 2 hold
for the full system (1.2)-(1.3). To begin, we note that if y is known then z is determined.

LEMMA 3.1. Let y € C[0, 1] be given. Then the boundary value problem for z, (1.3),
has a unique solution.

Proof. Write q(x)=y""A exp (h(y(x))). The difference of two solutions of (1.3)
satisfies

1
IY; z"—z'—q(x)z=0
with the same (homogeneous) boundary conditions. Multiply this equation by —z and

integrate from zero to 1; integrate by parts and use the boundary conditions to get
1 1 (! !
0=—[22(1)+22(0)]+—J (z)? dx+j qz* dx.
2 M ), 0

Since g > 0, this shows that z=0.

For fe C[0,1] write | f]| for maxo=.=;|f(x)|. We next bound ||z|| in terms of
bounds on y.

LEMMA 3.2. Let Y be a positive constant. Then there are positive constants y,=
vo(A, Y) and C such that for any y € C[0, 1] with 0= y(x) = Y for 0= x =1, the solution
z of (1.3) is bounded by

lz]|=Chre”

provided y= v,.
Proof. The solution z of

1
—z"—z'=f(x), 0<x<l1,

M
(3.1) z'(0) — Mz(0) =0,
z'(1)=0

is

z(x) = *L f(§) dg—e™ J e Mf(¢) dt.

X

A short calculation shows that ||z|| = ||f]|. The solution z of (1.3) solves (3.1) with
f=xrexp[h(»)]1+y "2).
If0=y=Y then 0=h(y)<Y, so that
Izl =xe¥(1+y7z]).
Thus if y'A e¥ <1, then
lzl=(1=y"Ae¥) A e”

and the lemma follows.

Next we use this estimate to show that the solution of (1.3) depends Lipschitz
continuously on the coefficient y, provided 0=y =Y.
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LemMmA 33. If Y>>0, y,, y.€ C[0, 1], if z, (respectively, z,) is the solution of (1.3)
with y =y, (respectively, y =y,), if 0=y (x)=Y, k=1,2, and if y=v,, then

lzi—zll=s(1—=y A e")'Q+y'Cre)A e ||y, — .

Proof. Subtract the equations for z, and z,. Then

1 -
™M (21— 25)"— (21— 2,) = A ("0 — ")+ y A ("W 2, — "7 2y)

— A(eh(y,) _ eh(yz))+ ,y—lA(eh(y,) — eh(,vz))zl + ‘y—l)( eh(yz)(zl _ 22),

and z, — z, satisfies the boundary conditions. By Lemma 3.2, ||z,[| = CAe". The function
exp [h(y)] is Lipschitz continuous in y for 0=y =Y with Lipschitz constant e”. By
the proof of Lemma 3.2,

lzi—zl=Aeyi=yll+y A e¥ iyl Che” +y A e¥ |2, ~ 2z
and the lemma follows.
Next we estimate a Lipschitz constant for the dependence of the solution y of
(1.2) on z regarded as a coefficient. It is nearly evident from the form of the equations

that if y,, y, are solutions of (1.2) with coefficients z =z, and z = z,, respectively, and
with the same initial data, then we have an estimate of the form

(3.2) | ¥1— y2ll = const ’)'-1||21_22||~

We could next combine this result with Lemma 3.3 to set up a convergent iterative
scheme to solve the coupled boundary value problems (1.2)-(1.3). However, the
constant—obtained in (3.2) from a direct application of the Gronwall inequality to
(1.2)—would contain a term of the form exp (exp+/B), and our iteration could be
shown to converge only for enormously large y. Therefore we localize (1.2) at the
spiral point («, 0) and obtain an estimate like (3.2) with a somewhat better constant.

Recall from Appendix C the change of variables localizing (1.4) at the spiral point

(3.3) [yy—’a] =[Hl/2 2][2]

Apply the same change of variables to (1.2). If ( yi, yi) corresponds to (u, v.), k=1, 2,
under this change of variables—here subscripts indicate different solutions rather than
components of a vector—then u, — u, = y, — y, and we can estimate u, — u, instead. The
following proposition gives the resulting estimate.

ProposITION 3.1. Consider the initial value problems k=1, 2:

1 _
— Yi—Yk—By+BA(1+y7'z) exp [h(3)]1=0,

H
(3.4) yk(O) ="
yi(0) = Hn.

Assume 0<n <, ||z||= CA e” fork =1, 2, and that y is sufficiently large. Then || y.| < Y
Jor k=1,2 and there is a constant c such that

[ yi—y.l= YHQ‘UC log B exp [Qw e"%c log B(1+ ‘)’—IC/\ ey)]”Zl —2.
Use the change of variables (3.3) to transform (3.4) to

(3.50) [ulk] =A[:k]—Qw(N(uk)+‘y_'sz(uk))|:(l):|, k=1,2

v Kk
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with appropriate initial conditions, as in Appendix C. Subtract (3.5,) from (3.5,) to
obtain for the difference variables (u, v) = (u; — u,, v, — v,):

[:’] =A[:‘] ~ Qu{N ()= N(u)+y'[2,F(w) —zzF(uz)]}[‘l’],

Jo-[()

Now use the variation of parameters formula to get

[“](x)= -Qw J eA(""S)W(s)[O] ds,
v 0 1

in which W denotes the expression in curly brackets in (3.6). Now u(x) is just the
first component of the right-hand side, and we get

(3.6)

3.7) u(x)=—Quw j eH ™92 gin w(x —s) W(s) ds.
0

Write Nk = N(uk), Fk = F(uk); then

(3.8) W=N,-N,+ ‘Y_I[Zl(Fl“Fz)+F2(zl -z)]

LEMMA 3.4. There is a constant ¢ such that c log B is a Lipschitz constant for N
and F and a bound for F foru=Y —a.

This follows from the forms of N and F derived in Appendix C, and from (B2)
for Y. Next, by the bounds on y when y~' =0 derived in § 2, the assumed bounds on
n and |z, k=1,2, and continuous dependence, it follows that y, <Y and thus
u, < Y — a. Insert the Lipschitz conditions for N and F into (3.8) to obtain Lemma 3.5.

LEMMA 3.5. |W(s)|=clog B(1+y 'Cx e")|u(s)|+ vy 'clog Bllz,—z|, and con-
sequently

|u(x)|=Qw e"’*- clog B(1+y 'Cre¥) J- lu(s)| ds+ vy 'clog BQw e"/?||z,—z,|.
0

The estimate of Proposition 3.1 now follows by the Gronwall inequality [H].
PROPOSITION 3.2. Let ) be given, 0 < < 7. There is a unique {,0<{ < CA e" such
that the solution of the coupled equations (1.2)-(1.3) subject to the initial conditions

y(0)=mn,  y'(0)=Hn,
z(0)=¢  Z'(0)=M{,

satisfies the second boundary condition for z: z'(1) =0.

Proof. Construct sequences {yi}x-o and {z}x-o as follows. Let z,=0, and let y,
be the solution of (1.2) with z = z, there, subject to the initial conditions (3.9). Then
for each k=1,2,: -, let z; be the (unique) solution of the boundary value problem
(1.3) with y =y,_, there, and y, the solution of the initial value problem (1.2), (3.9)
with z = z;. By Lemma 3.2 and Proposition 3.1 we have ||z/[|=CAe”, |y = Y, k=0.
Combine the estimates of Lemma 3.3 and Proposition 3.1 to get the estimate

"yk+l—yk" = ‘Y—IC(Ba Ha B, A)" yk—yk—l”‘

A similar estimate holds for z. Thus if vy is sufficiently large, the y, and z, converge
uniformly; the limiting pair (y, z) satisfy the differential equations (1.2)-(1.3), the
initial conditions (3.9) for y, and the boundary conditions (1.3,) for z.

(3.9)
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CoRrOLLARY. The coupled boundary value problem (1.2)-(1.3) has as many solutions
with 0= y(0) =7 as has the decoupled equation (1.4).

Proof. 1t is enough to show that (2.3) and the analogues of Lemmata 2.1 and 2.2
continue to hold when y is taken to be the solution of the coupled system. The angle
6 is well defined: the polar radius r is bounded away from zero along solutions of the
decoupled equation that start on the initial conditions. For sufficiently large vy this is
still true for the solution of the full equation. Thus 6 is well defined, and the stated
conclusions are valid by continuous dependence.

4. Comments.

(1) The estimate following (3.7) can probably be improved. The integral should
be O(w™") unless W oscillates with frequency w—but in that case the amplitude of
W should be quite small.

(2) The leading term in the asymptotic expansion of 8, (2.13), is unimodular. If
0 itself were indeed unimodular, then Lemma 2.1 would give an exact count of the
number of solutions. Possibly, this could be answered by computing the solution of
the variational equation by the method of averaging.

(3) The question of the stability of the steady states found here remains open.

Appendix A. Locate and classify critical points of the decoupled y-equation. The
critical points of (2.1) are given by

BA Y1 ]
Al =0, =—-cexp|——1|.
(A1) Y2 341 B p [1 +yly,
Since vy is large, we expect the second equation to have two roots near the roots of
BA
y=—¢€’
B

when this has two roots, namely, when BA/B <1/e. In what follows we will choose
successively large v = yo(8), with B/vy,(8) >0 as B - co; the expression O(f(B)) will
mean “with a constant independent of 1y, for all y> y,(8).” For all results prior to
§ 3, it suffices to take vo(8)= B>

Iterate (A1) to obtain the first root

BA BA
(A2) a =—(1+—+ 0(3‘2)).
B B
Next, take logarithms in (Al):
y B
A =log —+1 .
(A3) 1+y 1y og BA 0g y.
Let G = B/ BA. Iterate the last equation, bearing in mind that v is large; conclude
that
loglog G (log log B)2
A4 =a,= +log1l + + )
(A4) a=a,=log G+loglog G log G (0] log B

This critical point takes a central role in the analysis that follows. We will always call
it simply a.

The third critical point plays no role in this work, for the solutions that interest
us will obey 0=y(x)=Y, with Y a B-dependent constant slightly larger than a. For
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completeness, we give the third critical point. Rearrange (A3) to get

y
1+y7ly

log y =~log G+

Y

=—log G+ .
BT ey Ty

We seek a root a, near (BA/B) e”. Iterating now for log y gives
BA
a2=? e’(1+0(y* e™)).

Of course this is enormous compared to a.
Let us now classify the critical points. Denote the term in the exponential by

y
-1

(AS) =15

Then a short calculation shows that the Jacobian of the system (2.1) at a critical point
is given by

0 1
J(a;,0)= [HB(I —ah'(a;)) H] .

(This calculation uses the fact that (A1) holds for y, = @;.) The determinant is negative,
and we have a saddle, for (a,, 0) and («,, 0). The determinant is positive at (a, 0) =
(@, 0). At this point the discriminant (Tr J)>—4det J is negative, and we have an
unstable spiral, when the inequality

ah'(a)—1>::—;-

holds. Since h'(y)=(1+ v 'y)7? this inequality holds as soon as 8 is large enough
for any fixed H, B, A; recall that « is given by (A4) and y~'B is small.

Appendix B. The conservative system. Consider the potential energy function
V(y, y~") defined by

’ =1y __ y _
V(J’a?’ )—H(BAexpl:l_‘_y—]y] By)a
V(0)=0.

For the special case ¥y~ ' =0 we have explicitly

V(y,0)= H(B)\(ey— 1)—-§y2) .
The saddle-loop for the conservative system (2.4) crosses the y,-axis at the point (Y, 0)
defined by
(B1) V(Y,y") = V(a, vy ™).

We determine Y for y™'=0; then the Y for finite y differs from this by O(y ™" log B).
We have to solve the following equation, from (B1) and the approximation (A2) for ay:

H(B)«(ey—l)—g Y2) =§(—B—;)—+ O(B™?).
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This leads to

BY’
2B)

Y=log( +1+0(B“))

=log —E+2 log Y—-log2+0O(B™"),
BA
and the solution is given by

B B
Y =log—+ ——1 +
OgBA 210glogBA og2+o(1)
=a+loglog£—log2+o(l)
BA
=a +loglogvB/BA+o(1).

In addition, we find that the saddle-loop crosses the line of initial conditions at point
n:

K(m, Hn) = K(ay, 0).

The equation for the “large” solution leads to

2

HT n2+H(BA(e"— 1)—§ n2> =0(B™")

or

-H
n =log (EZ—BX_ 7’ +1+ O(B_l))

1-H
=log (1—% n2-Tm+1+0(ﬁ“)>

and we find that =Y+ O(B87").

Appendix C. Localization at the spiral point. Translate the origin to the spiral point
in (1.4) by the substitution

Nn=wta, Y2=wW;

and get

wi\ w,
(wa) B (H{W2+B(W1+ a)—(BA/B) exp [h(a+ wl)]}>

[HB(I—Oah’(a)) 1:1](:;)

h'(a)w, , B 0
’H‘“B<e"p[1+(y“w.)/(1+y—‘a>]—"(“)”" ‘)(1)‘

The Jacobian at the spiral point is

0 1
I(e)= [HB(I—ah’(a)) H]
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with complex eigenvalues given by

2
%I:tiw, w2=HB(ah’(a)—1)—£IZ.

Perform a linear change of coordinates with the matrix S,

1 0
S=[H/2 w]’

whose columns are the real and imaginary parts of an eigenvector for H/2+ iw;

2 2 ( / ) 1 2

and obtain the system

u [H/2 o |fu 0
D (u;)‘[—w H/z_(u)_o“’N(“‘)[l]'
Here we set
_=HaB= 1 - -1
Q=0 W) -(Jay+(Hapy TOE )
_ h'(a)u o, _
(C2) N(u)._exP[1+(y"‘u)/(1+y“‘a)] h(a)u—1

is the nonlinearity. Note that when vy, B are large we have Q ~1; note further that
N(0)=N'(0)=0.

By following the coordinate changes in the boundary conditions we find in the
new variables the line of initial conditions

H Ho
(C3) u(0) =2 i (0) +—,
w w
and the line of final conditions
H
(C4) uz(1)=-2— uy(1).
w

We can also perform the same change of variables for y in (1.2) with the coefficient

z. We obtain
u; l_ H/2 w u, . 0
[uz] —I: -—w H/2]<02> ~Qu(N(u)+y ZF(“l))[l]

with N as before and F given by

F(u)=exp[ h(a)u ]

1+(y 'u)/Q+y 'a)

Appendix D. Averaging computations. We begin by expanding the vector field of
(2.10) in powers of w~'/2. For this we require the Taylor expansion of the nonlinear
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function N defined by (C2). Let

-1

Y

= = ! = -1 -2
o= kM@=t

the function h being defined by (A5). Then

(D1) N(u) = Nyu?+ Nau®+ O(u®)
with
k2 3
N2=7—a'k, N3=%—-ak2+0'2k.

We note that N, =3+ O(y 'a), N3=4+ O(y 'a). This illustrates the earlier remark
that replacing h(y) by y in the exponential throughout makes no essential difference.
Inserting the expansion (D1) for N into (2.10) leads to

R=-w""2QR>N,cos* (¢ —1t)sin (¢ — )

2
¢=—0"">QRN, cos® (¢ — 1) —w 'QR’N; cos* (¢ — 1) + O(w~?).

(D2) +o ('I-!R — QR>N; cos® (¢ — 1) sin (¢ — t)) +0(w™?),

Define

- R*cos® (p—t)sin (¢ —1t)
f(ta R, ‘P)“ QNZ( R0083 (‘P_t) >9

- 3 3 _ . _
g(t,R,¢)=((H/2)R QR®N; cos® (¢ —1t) sin (¢ ,)).

—QR?*N;cos* (¢ —1)
Then (D2) may be written
(R, ¢) =0 ’f(,R, @) +07'g(, R, ¢) + 0 ’p(1, R, ¢, @™ "'?)
with @ *?p being the remainder in Taylor’s formula. The functions f, g, p are 27-

periodic in ¢t and the average of f vanishes:

2

f°(R,<p)=2—1;J ﬂf(T, R, ¢) dr=0.

0

Define

R )= [ s R ) e [ [ fr R0 dra

0 0 0
fl(t9 Ra ‘P) = D(R,tp)f(t9 R9 ‘P)Ul(ta Ra ‘P)

and let f'° and g° be the respective mean values over a period of ' and g. By Theorem
3.9.1 of [SV], the solution of (2.10) with initial conditions R(0)= R,, ¢(0)= ¢, is
approximated with an error that is O(w™"/?) for 0=t =w by the solution of

d - _ _
5 & ) "=w'(f"(R, $)+g°%R, ¢)),

(D3) _
(R(0), #(0)) = (Ro, @o)-
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We now compute v, f', f'°, and g

t
I R cos® (¢ — 7) sin (¢ — 7) dr — Mean value
v'(1, R, ) =—QRN, K ° J

t
cos® (¢ — 1) dr —Mean value
0

1
SR cos® (¢ — 7)o — Mean value
= —QRN,

1
K—sin (p— 'r)(',+§ sin® (¢ — 7)— Mean value

1 1
gR cos® (¢ —1t) -3 R cos® ¢ —Mean value
= "'QRN2

1 1
\—sin (p—1t)+sin @ +§ sin® (¢ — 1) -3 sin® ¢ — Mean value

R
—3-cos3 (p—1)
="'QRN2

1
\—sin (¢ - t)+§ sin® (¢ — 1)
Next,
fl =Drp)f* o'

B 2N2R<2R cos’(p—t)sin(¢—t) R*[cos(p—1t)—3sin’(p—1t)cos (¢ — t)])
= QN cos® (¢ —1t) —3R cos® (¢ —t) sin (¢ — 1)

R 3
— cos —t
3 (¢—1)

. 1.,

—sin (¢ — t)+§ sin’ (¢ — 1)
=Q’N3R
Rz(g cos’ (¢ —t) sin (¢ —t)+cos (¢ —t)(1 =3 sin? (¢ — 1)) sin (¢ — t)(% sin? (¢ — 1) — 1))
R(% cos® (¢ —t)+3 cos? (¢ —t) sin? (¢ — t) —cos? (¢ — t) sin* (@ — t))
To compute f ', observe that the first component of f' has mean value zero. Hence

R, ¢) = QzNiRz((l)).

Next,

g%R, )=
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So the averaged equations are

(D4)

R H.
—= —R R(0)=R
dt w 2 3 ( ) 05
¢ .5 _
Et—=w 1ER23 (P(0)=‘P(),
5 2 N2 3 1 -1
== Q’°N2-ZQN,=—+ .
IZQ 2 8Q 3554 O(a™)
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INERTIAL MANIFOLDS AND MULTIGRID METHODS*

R. TEMAMTY

Abstract. This article presents an analogy existing between the concepts of approximate inertial mani-
folds in dynamical systems theory and multigrid methods in numerical analysis. In view of the large-time
approximation of dissipative evolution equations in a turbulent regime, a new algorithm is proposed and
studied that combines some ideas and concepts of inertial manifolds and multigrid methods. This article
emphasizes theoretical questions. More practical (computational) questions will be investigated elsewhere.

Key words. inertial manifolds, attractors, partial differential equations, approximation, multigrid
methods

AMS(MOS) subject classifications. 35K60, 65N05

Introduction. Two theories have developed in parallel during the last years with
different objectives; namely, the theory of inertial manifolds that has emerged from
the study of dynamical systems and the theory of multigrid methods in numerical anal-
ysis. Although these two theories seem very far apart, our aim here is to show that they
have some underlying ideas in common and to investigate the relation between them.

Multigrid methods concern the numerical solution of partial differential equations
by finite differences or finite elements using two (or more) mesh grids, one finer and
one coarser. The main observation constituting the starting point of the theory is that
a simple iterative method is sufficient to determine the high-frequency components of
the solution, but that further effort is needed to solve the low-frequency components
(see [B], [H], [Mc], and the references therein).

In dynamical systems theory the objective is to study the long-term behavior of
the solutions of an evolution equation. When the equation is dissipative all solutions
converge as - 00 to a complicated set &, the global attractor, which may be fractal.
This set embodies the large-time dynamics of the equation, corresponding to all sorts
of regimes, including the turbulent ones. Although this set may be fairly complicated,
in general it has finite dimension. Inertial manifolds are smooth finite-dimensional
manifolds that are invariant by the flow, contain the global attractor, and attract all
the orbits at an exponential rate. All dissipative systems are not known to possess an
inertial manifold, but the related concept of approximate inertial manifolds has been
introduced and applies to a broad class of dissipative systems (see [FST1], [FST2],
[FNST1], [FNST2], [CFNT], [MS], [T4], and the references therein). Now, in essence,
inertial and approximate inertial manifolds correspond to an exact (or approximate)
interaction law between small and large wavelengths. When an orbit lies on the inertial
manifold the small wavelengths are, at each instant of time, an explicit function of
the large wavelengths, this correlating function being the equation of the manifold.
And of course, an orbit starting outside the manifold converges to it exponentially
fast, and thus soon, after an initial period, the interaction law between small and large
wavelengths goes into effect.

In previous articles (see [FMT], [T5], [MT1], [MT2], [JRT]), we have shown
how we can construct effective numerical algorithms by using approximate inertial
manifolds, in the context of spectral and finite-element methods. Our object in this

* Received by the editors January 31, 1989; accepted for publication April 6, 1989. This work was
supported in part by National Science Foundation grant DMS-880296.
+ Laboratoire d’Analyse Numérique, Bitiment 425, Université Paris-Sud, 91405 Orsay, France, and

Institute for Applied Mathematics and Scientific Computing, Indiana University, Bloomington, Indiana
47405.
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article is to present and study similar algorithms in the case of finite differences. Here
we naturally meet the methodology of multigrid methods: the large wavelength com-
ponents of the flow are based on the coarse grid, while the small wavelength components
are based on the fine grid. Let us mention, however, that despite this analogy, the
questions that we address here are quite different from those addressed in the multigrid
literature. The multigrid literature emphasizes more the linear part of the equation,
while here we are more interested in the nonlinear terms: following ideas derived from
inertial manifolds and dynamical systems theory, our object here is to describe in an
approximate way the nonlinear interaction of small wavelengths based on the finer
grid and large wavelengths based on the coarser grid.

For the sake of simplicity we will devote this article to some specific situations
and examples, but our results apply to much more general situations. We consider a
class of nonlinear evolution equations for which the linear elliptic part corresponds
to a Dirichlet problem in a square. In § 1 we describe our space discretization procedure
based on the use of the incremental unknowns. We are given two grids in the square,
the fine and coarse grids; the discretization is simply the five-point discretization of
the Laplace operator on the fine grid. However, instead of considering the usual nodal
values for the unknown function, we will consider the incremental unknowns on the
fine grid. They consist of the nodal values on the coarse grid and, on the points of the
fine grids not belonging to the coarse one, the unknown is the increment to an interpolate
value of the neighboring coarse points. We are not aware of any explicit use of the
incremental unknowns in numerical analysis.' The material presented in § 1 is, however,
very simple and necessary for the rest of the article.

In § 2 we present, at the level of linear elliptic problems, the appropriate variational
setting for the use of the incremental unknowns. The variational framework for
finite-difference discretization of linear elliptic problems was introduced by Céa [C].
Although the variational framework is very well suited for finite elements, and its use
is routine in this case, it is not indispensable and is less used in the context of finite
differences. We will see that it is very appropriate here, at least for the theoretical part
of the work; we will recall and present the necessary material in § 2.

In § 3 we present the nonlinear equations that we study. An abstract equation and
three specific equations related to the Navier-Stokes equations and to reaction-diffusion
equations are presented. As previously mentioned, our results apply to general
equations, but we refrain here from considering general equations and concentrate on
the specific examples. In § 4 we implement the spatial discretization of the problem
using two different grids and the incremental unknowns, and implement the algorithm
based on inertial manifolds and multigrid methods (the IMG algorithm). The stability,
consistency, and convergence of the algorithm are investigated in § 5, which relies
extensively on the use of energy methods. Finally, in § 6 we consider a full discretized
version of the IMG algorithm, i.e., one involving space and time discretization. We
consider an explicit time discretization scheme and restrict ourselves to a linear problem.
Indeed, another advantage of the IMG algorithm appears already, at the level of a
linear evolution equation, in the form of an improved stability condition; namely, the
stability condition is that corresponding to the coarse mesh instead of that correspond-
ing to the fine mesh.

In this article we have emphasized simple equations and theoretical aspects in
connection with dynamical systems. In subsequent works we intend to consider more
general equations; and we intend to describe in more detail and in a more practical

! They appear in a hidden way in the multigrid methods through the restriction and prolongation
operators.
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form the computational aspects of the algorithm. Other related forms of the algorithm
will also be considered; see in particular [T8].

1. Matricial structure of the problem. In this section we introduce the incremental
unknowns and show their use in the solution of finite-difference problems. We consider
successively one- and two-dimensional problems.

1.1. The one-dimensional case. For the sake of simplicity we start with the model
one-dimensional problem:
d*u .
(1.1) —-‘-i;;=f in (0, 1), u(0)=u(1)=0.

For N €N, we consider the fine grid corresponding to the discretization mesh h =1/2N
and the coarse grid corresponding to the discretization mesh 2h =1/ N. The coarse
gridpoints are the points 2jh, j=0,---, N (j=0 and N correspond to the boundary
points); the fine gridpoints are the points jh, j=0,---,2N (see Fig. 1.1). We write
Jf;=f(jh), uj=u(jh) and, on the fine grid, we write the usual finite difference scheme

1 .
(1.2) _P(uj_'_]"zuj'l'uj_]):f}, J:I,"‘,ZN_I, u0=u2N=0'
The incremental unknowns consist of the numbers u,;, j=1,- - -, N — 1, corresponding
to the approximate values at the points 2jh, and of the numbers
(1'3) ﬁzj+1 = Uzj+1 "%(“2,"" u2j+2)s j=0,---,N—1,
corresponding to the increments from the average values at the neighbors, at the points

(2j+1)h, j=0,---, N—1. We easily infer from (1.2) that

_ h? ;
(1‘4) u2j+1=?.f2j+la ]=0,. : .,N_l,

1 1 _ _ 1 .
(1.5) Z;l_z{zuzj —Uzjr— u2j+2}_§{u2j—l+ “2j+1} =Ef2j, j=1---,N-L

If we take (1.4) into account, (1.5) becomes

1 1 1 .
(1.6) W{zqu_qu-—Z_ u2j+2} =5f2j +Z {f2j—1+f2j+1}9 j=1---,N-1

The key point for the nonlinear analysis hereafter is that the incremental values are
small. This is transparent in (1.4), which shows that

(1.7) Upj1 = O(h2)~

In matricial form, we write (1.2) as

~

(1.8) AU =b,

. O X @] X O X @] X @]
0 1 2 3 4 5 6 7 8 9 10

Fi1G. 1.1. Coarse gridpoints (O) and fine gridpoints (x,QO) on (0, 1) for N =5.
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where U= (u;," -, usn_), b=(fi, -+, fon-1)', and A=(1/h?)T, T being the usual
tridiagonal matrix

2 -1 0
_1 .
T= .
. -1
0 -1 2

We may reorder U, b into their coarse and fine components:
U=(Uca Uf),’ b=(bc, bf)ta
U.=(up, ++, Uan-)', Ur=(uy, us, - - , Uan—)

bcz(.f2a”'a.f2N—2)t’ bfz(flsf;".‘aféN-—l)ta

and rewrite (1.8) as

(1.9) AU=b,

this time with
A — (All A12) ,
A21 A22

Ay =(2/h*)Iy_y, Ay =(2/h*)Iy, where I, is the jth-dimensional unit matrix and A,
is an (N — 1) x N matrix:

1
A12=A21=_PBN,
1 1
) 0
By = o
1 1

Using the incremental unknowns, we then replace U by U= (U, Uy)',

(1.10) U=S0,

Iny O ) -1 ( Ino 0 >
S =( ‘ ,  ST= ‘ :
By Iy 3By Iy

We infer from (1.9) that ASU=b or
(1.11) AU =b,
with A= S'AS, b= S'b. Like A, the matrix A is symmetric positive definite.

1.2. The two-dimensional case. Although some steps of the procedure will now be
less transparent, we will proceed in exactly the same way for the two-dimensional case.
We consider the Dirichlet problem

(1.12) —Au=f in(Q, u=0 on3Q

in the square Q = (0, 1)? and its five-point discretization. As above, for N eN, we set
h=1/2N, 2h =1/ N and consider the fine grid corresponding to the mesh h, and the
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coarse grid corresponding to the mesh 2h in both directions. For i, j=0,- - -,2N, we
write f; = f(ih, jh) and u;=u(ih, jh) is the approximate value of u(ih, jh). The fine
gridpoints are the points (ih, jh), i=1,--+,2j—1, j=1,---,2j—1, and the coarse
gridpoints are the points (2ih, 2jh), i=1,--- , N—1,j=1,---, N—1.

The discrete equations read

1 1
;1—2 (zui,j Ui, ui+l,j)+? (zui,j —Uij1— ui,j-H) =fij,
(1.13)
1=, J=E2N-1.

Usually we number the unknowns u; in a sequential order, say from left to right and
from top to bottom, and reinterpret (1.13) as a system similar to (1.8). We may also,
as for (1.9), reorder the nodes in a different way, with the coarse gridpoints first®
(numbered from left to right and from top to bottom), then the rest of the fine gridpoints
numbered in the same way.> We write

U=(U,U), b=(b,b),
and we then have an analogue of (1.9):
(1.14) AU =b,

with a matrix A that will not be made explicit here.

At this point we introduce the incremental unknowns: they are made first of the
coarse grid nodal values uy;,j, i, j=1,- -, N—1. Then, at the noncoarse gridpoints,
the incremental unknowns are defined as follows (see Fig. 1.3):

-0O00000O0 -
OxOx0OxO
- 0O0000O0O0 -
L OxOXxOxO -
- 0000000 -
Ox0Ox0OxO
- 0O00000O0 -

FI1G. 1.2. Coarse gridpoints (x) and fine gridpoints (x,O) on the square (0, 1)? for N =4.

x x x
@] x O x @]
X x X
(f1) (f2) (f3)

F1G. 1.3. Noncoarse gridpoints of type (1), (f2), or (f3).

2 See points x in Fig. 1.2.

3 See points O in Fig. 1.2. In fact, a more subtle numbering of the noncoarse gridpoints (x) is desirable;
this question will be addressed elsewhere.
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—Fine gridpoints of type (f1), those at the middle of two vertical coarse gridpoints.
The incremental unknown is then

= — 1
Uziv1,05 = Uzi+r,j _2(u2i,j + “2i+2,j),

i=0,---,N—-1, j=1,---,N-1.

(1.15)
—Fine gridpoints of type (f2), those at the middle of two horizontal coarse

gridpoints. The incremental unknown at such a point reads

Unipjr1 = Ugipjt1 "12'( Upin;+ u2i,2j+2)9

i=1,---,N—1, j=0,---,N—1.

(1.16)

—Fine gridpoints of type (f3), the rest of the noncoarse gridpoints. They are at
the center of a square of edge 2h, the vertices of which are coarse gridpoints (or
boundary points). In this case we introduce the incremental unknown

i — 1
Uzit1,2j+1 = U2it1,2j+1 —z( Upiojt Upinjrat Upin o+ u2i+2,2j+2)9
i,j=0,---,N—-1.

Note that in (1.15)-(1.17), 4.z =0 if @ or B =0 or 2N; of course the corresponding
unknowns disappear then.

Let U, denote the incremental unknowns defined by (1.15)-(1.17) and let U=
(U, Uy) be the new unknowns. We have

(1.18) U=SU,

where the matrix S, as well as its inverse, is easily derived from (1.15)-(1.17). Then
(1.14) yields

(1.19) AU=b

with A=S'AS and b=S'b.

The explicit form of A is less transparent here than in dimension 1. It is also less
transparent that the incremental values Uf are small as in (1.4); however, this will be
proved in § 2 by using the variational approach.

(1.17)

2. Variational framework. The variational formulation of (1.11) is well known.
We introduce the Sobolev space V = H{(Q2) endowed with its scalar product

a(u, v) =((u, v)) = J grad u.grad vdx
Q

and we look for u € V such that
2.1) a(u,v)=(f,v) VveV,
where (f, v) is the L*(Q)-scalar product of f and v:

(f,v)=j Sovdx.
Q

We denote by ||| and || the V and L? norms corresponding to the scalar products
((+,+)), (-, ), respectively.

We now recall briefly the variational framework corresponding to the finite-
difference scheme (1.12) (see [C]). For the mesh h=1/2N, we introduce the space
Vi, which consists of step functions u,, v, - - -, that are constants on the squares
centered at (ih, (i+1)h)x(jh, (j+1)h), i,j=0,---,2N —1 of edge h and that vanish
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if i or j=0o0r2N —1. The space V, is spanned by the basis functions wyy;, M = (ih, jh),
i,j=1,---,2N -2, which are equal to 1 in the square [ih, (i+1)h) x[jh, (j+1)h) and
which vanish outside this square. Thus
(2:2) w(x)= Y wu(M)wym(x), xe;
Mef,

Q, is the set of points (ih, jh), i, j=1,---,2N =2, and we denote by Q, the set of
points (i, jh), i, j=0,---,2N.

We introduce the finite-difference operators V,,, V,,:

1
Vinp(x) =% (¢(x+he;) — p(x)),
e;=(1,0), e;=(0,1) and we endow V,, with the scalar product

((up, v4))n = él (Vinun, Vinvn),

where (-, ) is as before the scalar product in L*(Q). We set |||, ={((,"))s}"/* and
observe that |||, and |-| are Hilbert norms on V,. The discrete analogue of (2.1) is
the following variational problem:

(2.3) Find u, € V, such that ((u,, v,)), = (f, v,), forall v, € V,,.

Setting u,(M) = u; for M = (ih, jh) € Q,, it can easily be shown that (2.3) is equivalent
to the system of equations (1.12) with the only difference that here f; is an average
value of f:

1 [G+OR [G+DR
(2.4) fii =z j L. f(x) dx.

Now there is no objection to considering the mesh 2k =1/ N and the correspondmg
space V,, spanned by the basis functions w,j, ur, MeQz,,, where wyy, », and Qz,, are
defined exactly as before. We are not interested here in the analogue of (2.3) in V,,.

Rather we are interested in an appropriate rewriting of (2.3). We observe that V,, < V,
and write

(2.5) Vi=V2h @ Wy,

where W, is the space spanned by the functions wy,,,, M eflh\flz,,. We thus obtain a
basis of V), consisting of the wy, pr, M € ﬁzm and the wy,,, M € f),,\ﬁz,,. The previously
used basis of V, or V,, is called the natural basis, while this basis of V, induced by
that of V,, will be called the induced basis.

We now write the decomposition of an element u, € V,, corresponding to (2.5):

(2.6) U =Yntzn, Y€ Von, zn€W,,

and try to identify y, and z,, on a square [2ih, 2(i+1)h[ X [2jh, 2(j+1)h[ of vertex
M, = (2ih, 2jh), as in Fig. 2.1.

M;x AO M, x X O X
3 4

AO A0 A0 @] O o
1 2

M, x A,O M,x X @] X

(a) (b)

F1G. 2.1. Subdivision of a coarse grid square into four fine grid squares.
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We have

3
Wan M, = Whn, T ) Wha,-
i=1

Hence

(2.7) u,= Y upn(M)wyy

Meﬁh
is equal on this square to

3 3
“h(Ml)WhM.+ Zl uh(Ai)WhA, = uh(Ml)thM,"' > (uh(Ai)_uh(Ml))whA,«-
i= i=1

We conclude that y, is the coarse grid component
(2.8) yh= 2 up(M)Wipm,

Meﬁz;,
and
zz= % {(u,(M+he,)—- uh(M))Wh,M+he,

MeQ,
(2.9) + (u,(M + he,) — uh(M))wh,M+he2
+ (4, (M + he, + he,) — u,(M))w, M+hel+he2}'

The components of z, in the basis of W, described before are thus the incremental
quantities of the form

(2.10) u,(A) —u, (M), u,(Ay)—u(M,), up(As)—u,(M,).

We will then call z, the incremental component of u, and y, its coarse grid component.
Let us observe that

(2.11) Z;,(M)=O VMEQZh, VZ;,E Wh'

Remark 2.1. These incremental values of u, are not those used in § 1. A different
basis of V, leading to cumbersome computations must be used to recover the incre-
mental unknowns mentioned in § 1. For the sake of simplicity we will pursue the
analysis with incremental values (2.10) and decompositions (2.5)-(2.6), (2.8)-(2.9).
However, for all practical purposes, we advocate the use of the incremental unknowns
of § 1, which are much more convenient in effective computations.

We now return to the approximate problem, namely (2.3). Using the decomposition
(2.5), (2.6) we write u, =y, + z, and observe that (2.3) is equivalent to

(Dt 20, P )= 9n) VI € Vo,
(Pt 2z, Z)n=(f2s) VZ,eW,.

Of course, replacing v, by u, in (2.3) we obtain the usual a priori estimates:

(2.12)

(2.13) llunll% = (f; un)-
Thanks to the discrete Poincaré inequality (see [C] or [T2]),
(2.14) |uh|§cl||uh||},,

where ¢, is independent of h, we find

”“h”i§|f||“hlgcl|f| ”“h”h,

(2.15)
| unlln = il £1.
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We can also obtain (2.13) by replacing y, by y, in the first equation of (2.12) and z,
by z, in the second equation of (2.12), and adding the resulting relations.

Our aim is now to show that (2.15) in fact yields two separate a priori estimates
for y, and z,.

Let us admit temporarily the following lemmas, which will be proved below.

LemMA 2.1 (Strong Cauchy-Schwarz inequality). We have the enhanced Cauchy-
Schwarz inequality:

V3
(2.16) (678 Zh))h|§"§' Iyullallzalls Yyne Van, Vz,€ W,
LEMMA 2.2.
(2.17) lwull% =2llysll3n  Vyue Vo

LEMMA 2.3 (Strong Poincaré inequality in W,). We have the following strong
Poincaré inequality for functions in W, :

(2.18) lzn| = hllzu|ln Vzn € W,
If we admit these lemmas, then
a1 = lyn+ za I
= lyulla+ Nzl % +2((Vhs 20))n
Z lyulla+lzalls =3l wallnlizalln

(2.19)
= (1-2) ol +12013)

1
=2 (Il + )33

and (2.15) yields

(2.20) Iyallzn+ Nzl =8¢l £
Finally, using (2.18) and (2.20),
(2.21) |za|*=8h%c} f|>.

We have thus proved the following analogue of (1.7).
PROPOSITION 2.1. The incremental component z,, of u, is small in the L*-norm:

(2.22) |z4| = 4hey| f].

We conclude this section by proving Lemmas 2.1-2.3.
Proof of Lemma 2.1. We must show that

V3 1/2 1/2
(2.23) J‘ V;,y,,V,,z,, dx=— (J |V,.y,,|2 dx) (J' |V,,z,,|2 dx) N
Q 2 Q Q

where V, = (V,, V). It suffices to show (2.23) with Q replaced by a typical coarse
grid square Z as in Fig. 2.1; (2.22) would then follow by summation for the different
R’s and utilization of the Schwarz inequality in the integrals.

For the sake of simplicity in the notation we set y,(M;) = m; and z,(A;) = p;, and
recall that z,(M;) =0 for all i (see (2.11)). The function y, is constant on the square
R of Fig. 2.1(a) and its value is m,. The function z, is constant on each of the four
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subsquares &, -+, R, numbered as shown in Fig. 2.1(b); on R,, z,=0, on R,,
Zy, =Pp1, On R3, z, =p,, and on Ry, z, = p;.

Now the computation is straightforward:

1
—On R, V3, =0,V2z, =Z (p1, P2),
1 1
—On R,, Vuyu =;l’ (my—my,0),V,z, =Z (=p1, P3—p1),

1 1
—On R, V., ="; (0, my—m,),V,z, =Z (ps—p2, —P2),

1 1
—On Ry, Vi, =; (my—my, my—m,),V,z, =Z(P4"P3,P5“P3)-

Then

(2.24) j |Vhyh|2dx:z{(m2_ml)2+(m3—ml)2}’
R
(2.25) J IVizu|* dx =2(pi+p3)+(ps—p)’+(ps—p2)*+(pa—ps3)’+ (ps—ps)’,
R

j \Y hthhZh dx
R

= —pi(my—m;) — p,(m3 —m;) + (my — m;)(ps— p3) + (m; — m,)(ps— p3)
= (my—m,)(ps—ps—p1) +(m3—m;)(ps—ps—p2)

1 1 12
={2(m,— m1)2+2(m3 - m1)2}1/2 ' {5 (Pa—p3 —P1)2+'2' (ps—ps “P2)2}

IA

2 12 3 2 3 2 3 2 3 2 1z
[Viyul? dx ) <35 (pa—p3)°+= (ps—p3)*+= pi+=p3
R 4 4 2

2
1/2 1/2
<\/.?3— (J ‘Vhyhlz dx) (J |thh‘2 dx) .
R R

Proof of Lemma 2.2. We use the same notation as in Lemma 2.1 and observe that
Vanyw is constant in & and equal to (1/2h)(my—m,, m;—m,). Hence

I

j |V2hyh|2 dx =(my— m1)2+ (m3— ml)za
R

and it suffices to compare this to (2.24).
Proof of Lemma 2.3. Using the notation of Lemma 2.1, it suffices to prove that

(2.26) j (z,)? dx=h? I |V 12| dx.
R R

The right-hand side of this inequality is given by (2.25) and the left-hand side is equal
to

h*(pi+p3+p3)=h*{2pi+2p3+(ps—p1)’+(ps—p)*}

= h2 J |thh|2 dx.
R



164 R. TEMAM

Remark 2.2. Although here we emphasize the case Q = (0, 1)?, let us observe that
the framework and results extend to the case where € is any bounded domain of R>.
In this case the mesh h can be any vector (h,, h,) of R*>, h;>0, and we consider the

mesh R, consisting of the points jh = (j hy, j,h,), ji€Z. We denote by o,(M) the
rectangle centered at M of edges h,, h,, and

oh(M)=a,(M)U o,(M+ h,e;)U a,(M + hye,).
Then
Q={Me R, ol (M) = 0},
Oy ={MeR, 0,(M) = Q},

and for M €(Q,, wy, is the characteristic function of o,(M). We define V,, as the
space spanned by the wyy, M eﬁ,., and V,, <V, is defined in the same way for
2h =(2h,, 2h,). The finite difference operators V;, are defined by

Vap (x) =2 (p(x-+ hie) = o(x).

We still have (2.5) with W, defined exactly as above. All the results extend without
any modification. Lemmas 2.1 and 2.2 are still valid, and in Lemma 2.3 we replace
(2.18) by

|zn| =max (hy, hy)| 2l
= (hi+h3) ")z,

and (2.22) is modified accordingly:

(2.28) |zu| =2 max (hy, hy)ci|f].

3. A class of nonlinear evolution equations. Let H be a Hilbert space endowed

with the scalar product (-, -) and the norm |-|. We consider an evolution equation of
the form

(2.27)

3.1) %+Au+R(u)=0
with
(3.2) R(u)=B(u)+ C(u)+f.

The unknown function u is a map from R, (or some interval of R) into H. The operator
A is linear self-adjoint unbounded in H with domain D(A). We assume that A is
positive closed and that A™' is compact. The powers A® of A for SeR are defined
and map D(A®) into H, and D(A’) is a Hilbert space for the norm |A®-|. We set
V= D(A"?) and we denote by |-|| =|A"? | the norm on V; »>0 is given.

The nonlinear term R(u) satisfies (3.2), where B(u) = B(u, u); B(-, +)is a bilinear
continuous operator from VXV into V’; C is a linear operator from V into H and
f€ H. We denote by b the trilinear continuous form on V given by

b(u, v, w)=(B(u, v),w) Vu v,we,
and we assume that
3.3) b(u,v,v)=0 Vu,veV,
(3.4) |b(u, v, W)= SlulZ[ul 2ol w2 w]|'? Yu,0,weV,

(3.5) |Cul=cyul] VueV,
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where c,, c; like the quantities ¢; appearing subsequently are positive constants. In
addition, we require that B maps V X D(A) into H and
(3.6) |B(u, 0)| = cllul*|u]V?|o] | Av]'> Yu,ve D(A),

3.7 |B(u, v)| = cs|ul"? Aul"?||v]| Vu, ve D(A).
Finally, we require »A+ C to be positive, i.e., there exists a >0 such that
(3.8) (vA+CQ)u,u)zZ a|ul* YueV.

Under the hypotheses above, we infer from classical results that the initial value
problem consisting of (3.1) and

(3.9) u(0) = uo

has a unique solution u = u(t) defined for all >0 and such that
(3.10) ue4R,; HYNL*0,T; V) VT>0.
Moreover, if u,€ V, then

(3.11) ue €(R,; V)NL*0, T; D(A)) VT>0.

Remark 3.1. As usual, we can rewrite (3.1), (3.2) in a weak (variational) form
that will be appropriate for the treatment below, namely,

d
(3.12) p (u,v)+a(u, v)+b(u,u, v)+(Cu,v)=(f,v) VveV,
where
(3.13) a(u, v) =(Au, v).
We may assume for simplicity that
(3.14) a(u, v) =v((u, v)), v>0,

but this is not essential.

The abstract equation considered here includes, in particular, several dissipative
evolution equations and the two-dimensional Navier-Stokes equations; however, we
do not want to consider such a complicated equation here, and we will now give some
simpler equations satisfying these hypotheses.

Example 1. Let Q be an open-bounded set in R*> with boundary 3Q. We consider
the evolution problem (of Burgers type):

i) d d

(3.15) —E—Au+a1—u+a2—y—+u—a-li=f, xef), t>0,
Jat 0x, 9x, ax,

(3.16) u=0 ondQ,

(3.17) u(x, 0) = uy(x), xe.

Here a,, a, are given in L*(Q) and fe L*(Q). We take H = L*(Q)), V= H{(Q), A=-A
with Dirichlet boundary conditions:

av ou Ju
B(u,v)=u—, Cu=a,—+a,—.
axl Bxl 8x2

It is easy to check that all the hypotheses are satisfied.
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Example 2. This is an example of an integral Burgers type equation. Everything
else being unchanged, we now consider

B(u, v) = (L u(f) dg) 2

ax,

All the hypotheses above are satisfied.

Example 3. This last example is a system close to the Navier-Stokes equations
but without the pressure term and the incompressibility condition; and the nonlinear
(inertial) term is modified as in [T1]. Let Q be an open-bounded set of R*> with boundary
0Q). The function u = (u,, u,) maps Q x (0, T) into R* and satisfies

1
(3.18) 3—1:—VAu+(u'V)u+5(divu)u=f, xeQ), t>0,
(3.19) u=0 ondQ,
(3.20) u(x, 0) = up(x).

We take H = L*(Q)?, V= HyQ)?, D(A)={H}Q)N H*(Q)}>, A=-vA, C=0, and
B(u, v) = (u- V)v+3(div u)v.
All the hypotheses are satisfied.

4. Spatial discretization. The IMG algorithm. In this section we present the IMG
algorithm, which combines the ideas and concepts on inertial manifolds and those on
multigrid methods. We start by describing the spatial discretization of (3.1) (or (3.12))
in a way suitable for our purpose. We then give an estimate on the incremental
component of the solution, which is a partial justification for the IMG algorithm.
Finally, we describe the IMG algorithm itself.

4.1. Spatial discretization. For the spatial discretization of (3.1), (3.12), we are
traditionally given a family of finite-dimensional spaces V,, © H endowed with a Hilbert
scalar product and norm ((-, - ))h, ||-||»- The parameter h is a discretization parameter.
For Galerkin methods, and particularly for finite-element methods, V,, < V and it is
required that U, V, is dense in V. For finite differences, as shown in § 2, the space V,,
is not a subspace of V and the hypotheses are slightly more involved; they will not
be recalled here (see, however, § 5).

For the spatial discretization of (3.12), we then consider a function u;, from R,
into V,, which satisfies

d
(4.1) @ (un, vy) + ay(up, vy) + by (up, up, V) + (Cotty, v,) = (f,v4) Yo, € Vi,

where a,, v,, and C, are appropriate approximations of a, v, and C. Of course, the
second step in the numerical approximation of (3.1), (3.12) is the time discretization
of (4.1), but we emphasize the spatial discretization here.

4.2. Incremental unknowns. As in § 2, we now consider two values of the discretiz-
ation parameter, h and 2h, and the corresponding approximating spaces V, and V,,.
It is assumed that V,, = V,, and, more precisely, we write as in (3.5)

(4.2) Vh = Vz;,@ Wh.
Any u, € V, is decomposed into

(4.3) ' U, =yt zp,
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where y, is called the coarse grid component of u, and z, is called the incremental
component of u,. We assume the following properties, which have been proved in § 2
when V=H}Q) and Q= (0, 1)

(4.4) I(ns 2l = A=) yullallzulln Vyn€ Von, Vz€ Wi,
where 0< 8 <1 is independent of h, and
(4.5) S,(h)|z,,l§||z,,||h Vz,,e Wh,

where S;(h)—> as h->0.

We now use the decomposition (4.3) of u, and it is straightforward that (4.1) is
equivalent to the following system for y,, z:

d - .
—nt2zn), Vn )+ an(Yn+ zn, Yu)
dt

(4.6) + b (Yn+ 20, yu+ 20, ) + (Co(n+ 21), In) = (S In)
Vyn € Vap,
d . .
(E (yn+z1), z,,) +a,(yn + zn, Z1)
(4.7) +b,(yn+ zn, Y+ zn, 2n) F(Co(yn+21), 2n) = (f, Z1)
Vz,e W,.

This is just a rewriting of the natural spatial discretization scheme (4.1) correspond-
ing to V,. However, as a partial justification for the IMG algorithm described below,
we want to show now that the incremental component z, is small for h small.

4.3. Estimate on the incremental component. To derive a priori estimates we must
assume that a,, b,, C, satisfy some hypotheses similar to those on a, b, C (see
(3.3)-(3.8)). We assume here that

(4.8) by (up, 4, v,) =0 Vu,, v,€V,,
(4.9) |1 (un, O, Wi )| = colun|™ | uan | ¥l o | | wal /2| wa | ¥
' Vuh9 Up, M’he Vh’

|an(un, vn)| = ol un || bl onll 5,

(4.10) ’
|Chutn| = csl|unlln  Yup, v € Vi,

(4.11) an(up, up) +(Crtt, wp) Z ay||lup ||z Vu, € Vi,

(4.12) [tn|n = collunlln  Vuy € v,

where cs-¢, and a; are independent of h(a,>0).

As usual, a priori estimates on u, are obtained by replacing v, by u,(=u,(t)) in
(4.1). It is equivalent to replacing 3, by y,(=y,(t)) in (4.6) and Z, by z,(=2z,(t)) in
(4.7) and adding the equations that we obtain. Thanks to (4.8) we find

14

2 dt |up|*+ an(un, up) + (Chttn, un) = (f; up).
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Using (4.11) and (4.12), we can then write

1d
5@ — ]+ ey fup |7 = 1S |
= col | unln
=2 || h"h+_—|f|2
d
(4.13) (_1;|“h|2+011||“h” § |f|2
d, , a;, ., cg )
: — P+ P == |f
(4.14) Gl S =21

The last inequality yields a uniform estimate of u, in (R, ; H):

(4.15) |un (8)|* = |u, (0)]? exp (—%t) ciglflz Vi>0.
9
Returning to (4.13) we find, for any T>0
1 2 1 2 cs 2
(4.16) = | Nl dt=—|u,(0)*+=|fI’=K
T 0 Ta] a,

Separate estimates can be obtained for y, and z, by using (4.4). Indeed,
leanll* = 1y + zull%
(4.17) = [lyulli+ N zall2+2((Vhs 26))n
228(|yalln+ 12 ll3),

and hence

1

T2 o K
(4.18) T . Ulywlls+ Nl zall%) dtg;&

Then, using (4.5), we obtain that z, is small in the following sense (at least):

(4.19) L i ar=Re s

' T), ™ T2 '
We can derive further a priori estimates on z,, but they involve more complicated
computations and will not be given here.

4.4. The IMG algorithm. The algorithm that we now present stems from the the
theory of dynamical systems, the idea being to approximate the universal attractor
describing the long-term behavior of the solutions of (3.1), (3.2). A partial justification
of this algorithm lies in the fact that some of the terms involving z, in (4.6), (4.7) are
small and thus can be neglected. We refer the reader to [FMT] and [T5], [T6] for
further justification.

The algorithm that we consider is the following: u, = y, + z, is an approximation
of u different from that above and, in particular, y,, z, are no longer the same as in
(4.6), (4.7).
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We look for u, =y, + z,, satisfying

dy, . -
(%’yh> +a,(yn+ zn, Y1)+ bu(Vhs Vs Vi)

(4.20) . . . . .
+ b, (Vhs Zns Y1) + b (2Zhy Yi, Y0) T (Co(yn+21), Vo) = (£, Jn) VI € Vap,

(4.21)  an(ynt2zn, 20) by (Vhy Y1, 20) F(Co(Wnt+24), 24) = (f, 24) VZ,€ W,
(4.22) (7h(0), n) = (uo, ¥u) VIn€ Vop.

Theoretical questions including the existence of y,, z, will be studied in § 5. For
the moment we conclude this section with some general comments.
We rewrite (4.21) in the form

a,(2zn, 2n) + (Chzn, Z4) = —aw(Yh, Zu) = bu (Vs Yhs Z4)
—(Coyn, Zu)+(f, 2n) Vi, W,

It then follows from the Lax-Milgram Theorem and hypothesis (4.11) that, at each
instant of time, z, = z,(¢) is uniquely determined as a function of y, = y,(¢) and of the
other data:

(4.24) 2y (1) = D, (¥ (1)).

By inserting this expression of z, in (4.20), we find the following equation for y,:

(4.23)

dys

(4.25) (‘(‘}1‘3)’;.) +a,(yh +Pn(¥n), V1) + b6 (ks Yis 20) + b (Y, Piu(n), Z1)

+ b, (Ph(¥h), Yno In) F(Co(yn + Pu(¥n)), ) = (f, 7n) VI € Vap.

We observe that, setting ®, =0 in (4.25), (4.22), we recover exactly the approximation
based on V,,. Hence (4.25) gives a V., approximation of y,, perturbed by some “‘small

terms” z, = ®,(y,). The solution u, of the IMG algorithm lies on the manifold , of
V,, of equation

(4.26) 2, = D@y (yn).

The dimension of this manifold is that of V,,. Note that, with a usual V,, discretization
(z, =0), the solution u, =y, would lie in V,,; and with a V,-discretization as in (4.1)
(or (4.6), (4.7)), the solution u, could be a priori anywhere in V. Here the solution
lies on the manifold ., of V, whose dimension is that of V,,. As in [T5] for the case
of spectral methods, it is expected that the IMG algorithm provides a Vj-accuracy,
with a V,,-complexity of computation.

Remark 4.1. Although we restricted ourselves to two discretization meshes h and
2h, we could as well consider two discretization meshes h and dh, d eN fixed (=2, 3,
4, - - ). All the developments above would be still valid without any modification; we
only need to extend (4.4), (4.15) (i.e., Lemmas 2.1 and 2.3) to this case.

5. Convergence of the algorithm. Our aim is now to prove the convergence of the
algorithm presented in § 4. We do not make any attempt at generality and, strictly
speaking, the convergence result hereafter applies to the three examples described in
§ 3. However, the methodology is general, and with appropriate hypotheses—including
in particular the so-called consistency hypotheses that specify how a, b,, C,, v,
approximate a, b, C, V—the result applies to the general equation (3.1), (3.12) and
to even more general situations.
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THEOREM 5.1. The hypotheses are those above, u, is given in H, and u = u(t) is the
solution of (3.1), (3.9). For every fixed h, the solution u, = y;, + z;, of (4.20)-(4.22) exists
and is uniquely defined for all t > 0. When h - 0, u, converges to u in the following sense:

(5.1) yr=>uin LP(0, T; H) strongly forall T>0and allp,1=p <, V,u, > Vu
in L*(Q % (0, T)) strongly, for all T>0.

(5.2) 2,0 in LP(0, T; H) strongly for all T>0 and allp, 1=p <, V,z,>0
in L*(Qx (0, T)) strongly, for all T> 0.

(5.3) yn>u and z,~>0 in L°(R,; H) weak-star.

The proof of Theorem 5.1 is given below. It comprises several steps, the first ones
being devoted to the derivation of a priori estimates.

5.1. A priori estimates 1. We start by deriving a priori estimates for y, and z,.
They are similar to those derived in (4.18), (4.19) for the usual discretization procedure.

The system of equations (4.20)-(4.22) is equivalent to (4.25) and (4.22), the
expression of @, being given by (4.24). Since ®,, is a simple (quadratic) function, the
existence of y, (and thus z,) on some interval of time [0, T,) follows readily from
classical theorems on differential equations. The fact that y, and z, are defined for all
t>0 (i.e., T, =+00) will follow from the a priori estimates below.

We replace y, by y, (=y,(t)) in (4.20) and Z, by z, (=z,(?)) in (4.21) and we
add the equations that we obtain. We find

1d
(5.4) EEIY}-P"‘%(Y}-"‘Z}., Yot 20) + (Co(yn+24), Yo+ 21) = (f, yn + z4).

We have used (4.8) and its consequence

(5.5) b, (@n, h, 04) = —bu(@n, On, W) You, Yy, 6, € V.
Thanks to (4.11) we then have

l

>t — |yl +aillyn+zllh = (f, yu+z1)

=|fllyn+zn| (bythe Schwarz inequality and (4.12))
= colf| |y + znlln

2
*lyn+ 2 “h = |f|2,

=

N|Q

(5.6) Iy;.l +ay |yt 2l <'—lfl2
Using (4.4) as in (4.17) and again using (4.11), we obtain

d c2
(5.7) E'J’hlz‘*zana(")’h"i"'||Zh||i)§'2|f|2,

d 2 2 2
(5.8) % lyal*+ lyhl == If I°.

We infer from (5.8) and from Gronwall’s Lemma the following estimate on y,,:

2a,6
(5.9) lyn(OP =y, (0)* exp ( ‘ ) + cg
c9 2 18
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This shows that y, remains bounded, and y, is defined for all t>0 (i.e., T}, = +0).
Furthermore, since by (4.22)

(5.10) [yn(0)] =ud,

we have a time-uniform estimate for y, that is independent of h:

(5.11) y» remains in a bounded set of L°(R,; H) as h~> 0.

As we have already mentioned, (4.23) and (4.24) imply that z, too is defined for all
t>0. By integration of (5.7) between zero and T (T >0 ﬁxed) we then deduce that

1 T 2 2 2 2
) = + dt=
(5.12) T L (Lyalla+llzall) o 6T |y (0)] + 18T rpea U
This implies that

(5.13) For every T >0 fixed, the norms of y, and z, in L*(0, T; V,) remain
bounded as h-> 0.

By use of (4.5) this yields

(5.14) For every T >0 fixed, the norm of {S,(h)}z, in L*(0, T; H) remains
bounded as h— 0.

Remark 5.1. We note that due to the term 1/ T in front of the integral in the
left-hand side of (5.12), this inequality yields slightly more than (5.13). More generally,

we can integrate (5.7) between t and t+ T (¢, T> 0 fixed); using (5.9) and (5.10) we
then find

1

t+T
L1 Gl iy as=
0

2 2
s

1 20,8 s
5.15 =——y.(0)] ( ! t)+( 2 ) 2
1T 2 2 1 2 ( c5 ) 2
— + = +
T,[, ("yh”h ||Zh||h) ds 2a16T|u0| 4o 362T ra 26 |f|

This estimate independent of h is valid for all t >0, T > 0. Of course (5.15) also implies
an analogue of (5.14).

Remark 5.2. We recall that in the case where V,, is the discrete analogue of H ()
as in § 2, i.e., for the five-point discretization of the Laplace operator, then

Il = j Vsl d,

T T
J Ith(t)||idt=I JIVhyh(x,t)dedt.
0 0 Q

Therefore (5.13) is an estimate in L*(Q x (0, T)), independent of h, for the discrete
analogue of the gradient of y, and z,.

5.2. A priori estimates II. The following a priori estimates give some improvements
that are not essential but are useful. We first restrict ourselves to the framework of § 2
(i.e., to Examples 1-3 of § 3). Since V,, is finite-dimensional, the norms of V, are
equivalent; thus (2.14) (or (4.12)) can be supplemented by another inequality:

(5.16) lunlln = Sa(h)|uy| Yu, eV,
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where S,(h) >0 as h— 0. In the situation of § 2 the computation of S,(h) is easy and
we find

(5.17) Sz(h)-'&

Now we set z, =z, (=z,(t)) in (4.23) and (4.8)-(4.11):
a (2, 2w) + (Cuzn, 2n) = —an (Vs 20) = bu(Vis Yy 20) = (Ciyn, 20) + (f, z1),
arl|zalln = collynllnlzulln + csllynllnlzal + celyal Ivallnllzalln + 15112l
= (7t ¢Sy (h) T+ el yaD lwnllnllzalln + Si(B) 'If 1l zlln  (because of (4.5)).
Again using (4.5) and (5.16), we find

|z4] = (a,S1(h)) (et cs Sy (h) ™'+ colyul) 1yl n +;1— (S,(h)7 £

~ 1 8(h)
al S,(h)

Owing to the expression of S;(h) in (2.18) (S;(h) =h"") and to the expression of S,(h)
in (5.17), we have

—— (c7+ ¢3S, (h)” +Ce|)’h|)|)’h|+ (Sl(h)) 2|f|

Si(h) _
Si(h) "~

Finally, thanks to (5.11), we conclude that
(5.19) z, remains in a bounded set of L°(R,; H) as H > 0.

(5.18) 2V2.

5.3. Passage to the limit. The passage to the limit A - 0 relies on fairly standard
methods. We will only sketch this step of the proof; the reader is referred to [T2] for
the details in related situations.

Thanks to (5.11), (5.13), Remark 5.2, (5.14), and (5.19), there exists a subsequence
(still denoted h) and there exists u:

(5.20) ue L°R,; HYNLX0, T, V) VYT>0,
such that for h—>0
yn—> uin L°(R, ; H) weak-star,
Viyn = Vuin L*(Q x (0, T)) weakly VT>0,
z, > 0in L”(R,; H) weak-star,
Vuz,>0in L*(Q x (0, T)) weakly VT >0.
We infer from (5.14) and (5.19) that
(5.23) z,->0in LP(0, T; H) strongly V1i=p<o, VT>0.

(5.21)

(5.22)

Also, by using a compactness argument recalled below, we can improve (5.21) and
show that

(5.24) yp—~>uin L?(0, T; H) strongly Vi=p<oo, VT>0 ash-0.

Using the convergences (5.21)-(5.24) we can then pass to the limit in (4.20)-(4.22),
following classical methods. At the limit we find that u is solution of (3.12) (or (3.1))
and (3.9). Since the solution to this problem is unique, we see by a contradiction
argument that the convergences (5.21)-(5.24) hold for the whole sequence h.
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Finally, for the strong convergence of the derivatives we consider the restriction
operators r, (see [C], [T2]) that map V into V,, and such that
(5.25) ol > U in L*(0, T; H) strongly,
' Vurnu—>Vu in L*(0, T; H) strongly.

We then consider the following expression, where u, =y, +z,:

T

Xo=2 (D -u(r+ |

0
A an(up — ryu, w, — raw) +(Cu(ty — ruut, (C(uy, — ryu), uy, — ryu)u, — ryu)} dt.
We have X, = X, + X3+ X3:

T

1
X;=5|y,,(r)|2+j {an(up, up) +(Chup, uy)} dt

0

=2 (P + J (fw) dt (by (54));

it is clear that, for h >0,

1 T
X}.—»X‘=5|u0|2+j (f, u) dt;
0

T

X4 =—(y(T), u(T))-2 I {an(up, ryu)+ (Cyuy, ryu)} dt;

0

as h>0, X} converges to

T

X?=—|u(T)?-2 I {a(u, u)+(Cu, u)} dt,
0
X*=-2Xx",
1 T
X; =3 Iu(T)|2+J {an(ryu, ryu) + (Cyryu, ryu)} dt.
0

Thanks to (5.25), when h -0, X} converges to —3X°= X"
Finally X, converges to zero and thanks to (4.11) we conclude that

T
j llup — ryull; dt>0 as h->0.
0

We denote by y,(t) and Z,(t) the components of (r,u)(t) on V,, and W,. Using again
(4.4) as in (4.17), we find

T
J Ive=Pullz dt>0 ash-0,

0
T
J lzn— 2|7 dt>0 as h>0.
V]
The conclusion follows then from the easy to prove fact that the incremental component

Z, of ru converges to zero as h- 0.
The proof of Theorem 5.1 is complete after we prove (5.24).
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5.4. Compactness. The strong convergence result in (5.24) is shown by using a
compactness theorem. The most appropriate here is that in [T3]. To apply this compact-
ness result, we observe (see, for instance, [T2]) that the set

(5.26) {ene H, |loulln=1}
is relatively compact in H = L*(Q). Furthermore we must estimate, for r> 0 fixed,

(5.27) J lyn(t+ 1) =y ()] dt.

0

By integration of (4.20) we find*

(yh(t+r>—y,,<t>,y“h>+ah(j

t

t+r t+r
uy(s) ds, j;h)+<ch j uy(s) ds, fh)

+(j Bu(n())+ Bu (9 (5), 20(5)) + Ba(zn(s), 3n(s)) ds 37;.)

- (J:mf(s) s )

We then set 3, = y,(¢+r)—y,(t) and integrate the resulting equation with respect to
t. This gives

J' lyu(t+r) = yu()? dr = 26; I

0 Jj=1
with

Il=

j a(J uh(s)ds,y,.(t+r)—yh(:)) dt

0

T+r 1/2 T
ér”za(j Iluh(S)IIidS> (I IIy;.(t+r)-yh(t)||hdt)

0 0

=cr'/?,

where here and below c is independent of r and h;

T t+r
L= J' (Chj uh(s)dS,yh(t+r)_yh(t)) dt
0 t
T+r 1/2 T
écsr'“(j uu,.(s)u%,ds) (j |yh(t+r>—y,.<:>|dt)
0 0
=cr'/?,

I3=

[ (] Bty as et -no) e
écﬁL (J |y,,(s)|||y,,(s)||,,ds)||y,,(t+r)—y,,(t)||,,dt (from (4.9) and (5.5))

T 1/2 T
écerl/2|Yh|L”(n+;H)(J ||J’h(s)"ids> (I “)’h(t""')—J’h(t)"hdt)

0 0

=cr'/2

* B,(¢4) = By(¢,, ¢;,), where B,(-,-) is the bilinear mapping from V, x V, into V, defined by
(B, (@1, Y1), 0n) = by(@n, Y, 6,), for all @, Yy, 6, € V.
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The two other terms involving B, and denoted I,, Is are estimated similarly. Finally,

I (j f(s)ds,yh(t+r>—y,.(t))dt

0

T+r 1/2 T
§r1/2<J If(s)? ds) (I |ya(t+1) = yu(O)ln dt)

0 0

I6=

=cr'/?
In conclusion (5.27) is bounded by cr'/? and tends to zero as r- 0, uniformly with
respect to h. As is shown in [T3] this, together with (5.26), ensures (5.24).

Remark 5.3. The extension of Theorem 5.1 to more general examples than those
of § 3 necessitate the following hypotheses:

(i) S»(h)/S.(h)isbounded by a constantindependent of h (see (5.16) and (5.18)).

(ii) The consistency hypotheses specifying how a,, b,, C,, and V,, approximate
a, b, C, and V.

(iii) The definition of a restriction operator r, mapping V into V,, and such that
(5.25) holds.

For example, in the case of the Dirichlet problem in a bounded domain Q of R?
with meshes h,, h, different in both directions, as in Remark 2.1, then

S,(h)=2c, {max (h,, hz)}—l

(see Remark 2.1); an easy computation shows that

1 1\
SZ(h)z\/i(h—f—"—Pl—g) .

Hence (i) is satisfied if h,/ h, remains bounded from above and below.

6. Improved stability. One of the advantages produced by the IMG algorithm is
an improved stability condition when discretizations in space and time are both
performed and an explicit time-discretization scheme is used. Since this improvement
is already transparent in the linear case we will restrict ourselves to the linear case
and replace b, C, b,, C, by 0. Without any loss of generality we can also set f=0;
finally for simplicity we take

a(u, v) =v((u, v)), v>0,
(6.1)
ay, (up, v) = v((up, V4))n-

After discretization in time by an explicit scheme the IMG algorithm (4.20)-(4.22)
now leads to the construction of two sequences of elements of V,,:

ygeVZh, néo’
Z:e Wh’ néO,
Up=ypt+zpe V,, n=0.

These elements are defined recursively. We first define y$, by setting as in (4.22):
(6.2) (Vhs Fn) = (uo, )  VFn € V.
When y} is known, n =0, we define z}, and y; "' as follows:

1 n n ~ n n o~ ~
(6.3) =t =yh Pt a (it zi, ) =0 Vi, € Vy,
k

(6.4) ah(y;',+22,5,,)=0 Vz",,e Wh'
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Here T>0 is fixed, M eN is given and k= T/ M is the time discretization mesh. We
rewrite (6.4) as

(6.5) an(zh, Zn) = —an(¥h, Zn) VZ,e W,

and we infer easily the existence and uniqueness of zj € W, satisfying (4.3)-(4.4) from
the Lax-Milgram Theorem. Once zj; (and y};) are known, (6.3) readily determines
yi*le V,,. The construction can then continue.

The stability condition arises when we try to determine a priori estimates on the
sequences y;, z,. For the a priori estimates we replace y, by yj in (6.3) and Z, by z;,
in (6.4). We have

28 =y v =R P =l = Rt = il
Thus,
(6.6) TP = yal = lyh ™ = yal + 2ke((ug, yi))n =0,
(6.7) v((un, zw))n =0,
and by adding (6.6) to 2k times (6.7) we find
(6.8) R P = 1yhl+ 2k lublll = [ya*" - yil™

To estimate the right-hand side of (6.8) we replace 7, by k(y2*"' —yp) in (6.3) and we
obtain

n+1 __

[yh

n+1

=—kv((uh, yn  —Ya)n
skvfupllallyi™ = yilla.

Now we can use the analogue of (5.16) in V,,:

lenlln = S22h)lenl Ven€ Vi,

W’

y

and this leads to
Iyt = yhl = kvS,20) [[ug||lyi™" = yhl,
Iya™! =yl = (kvSy(2h))? || uill .-
We compare (6.8) and (6.9) and write:
(6.10) TP = |yal + 2kv(1 - 3kv(Sy(20))?) Juni =0 Vn=zo.

We can deduce the desired a priori estimates from (7.10) provided k, h satisfy the
stability condition

(6.9)

(6.11) kv (S,(2h))* <1,

or more precisely

(6.12) 3kv(S,(2h))°’=1-9,

for some 6, 0 < 8 < 1. If we replace S,(2h) by its expression from (5.17), (6.11) becomes
k

(6.13) h—'z’ <1.

If instead of (6.2)-(6.4) we consider the traditional explicit finite-difference scheme in
V., we obtain the stability condition

kv (S,(h))* <1,
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ie.,
kv 1
e < %

In conclusion, the IMG algorithm allows a time-step four times larger than the usual
explicit finite-difference scheme and yields a similar result with essentailly four times
fewer computations. Of course the IMG algorithm as depicted in (6.3), (6.4) is not
fully explicit since the determination of zj from (6.5) is implicit. However, we must
remember that the zj, are small increments and therefore their determination can be
made in a very rudimentary way.

A more complete analysis of the time-discretized version of the IMG algorithm
in the context of nonlinear equations will be performed elsewhere, but we thought

that it would be useful to indicate here another partial justification of the IMG
algorithm.
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THE BIFURCATION OF HOMOCLINIC AND PERIODIC ORBITS
FROM TWO HETEROCLINIC ORBITS*

S.-N. CHOWT, B. DENG$, AND D. TERMAN$§

Abstract. Conditions are found for a unique homoclinic or periodic orbit to bifurcate from a hetero-
clinic loop for autonomous ordinary differential equations. This leads to a codimension 2 unfolding of a
heteroclinic loop. This approach, based on an idea developed by Sil’nikov, reduces the problem to the study
of bifurcation equations. The result is applied to various types of traveling wave solutions of the FitzHugh-
Nagumo equations with a cubic nonlinear term.

Key words. heteroclinic orbit, homoclinic orbit, periodic orbit, Sil’nikov solution, exponential expansion,
strong A-lemma, Lyapunov-Schmidt reduction, bifurcation equation

AMS(MOS) subject classifications. 34A34, 34C28, 34C99

1. Introduction. This paper is concerned with the creation of homoclinic and
periodic orbits from a pair of heteroclinic orbits of differential equations of the form

(1.1) x=f(x, @), xeR™, acR’

We assume that a, beR" are hyperbolic equilibria of (1.1) for all a. By a heteroclinic
solution from a to b we mean a solution I'(¢) of (1.1) that satisfies

lim I'(t)=a and lim I'(¢)=0b.

t—>—00 t—>-+00
A homoclinic solution to a is a solution of (1.1) that satisfies

lim I'(t) = a.
|t|>o0
In this paper we demonstrate that a bifurcation of homoclinic solutions must take
place at a value «, for which there exists a pair of heteroclinic solutions from a to b
and from b to a, if certain generic conditions are satisfied. Moreover, if we assume
that in a parameter space there are two curves ¢, and ¢, that cross transversely at
a, and correspond to a—> b and b- a heteroclinic solutions, respectively, then we
show that there are two curves c,, and ¢, in parameter space emanating from o, that
correspond to homoclinic solutions. The curve c,, will be tangent to c,;, at a,, and ¢y
will be tangent to ¢,, at a,. We also consider the existence of periodic solutions of
(1.1). We prove that the curves c,, and ¢, form the boundary of a sector A; a periodic
solution of (1.1) exists for precisely those values of « in A.
The motivation of this work comes from the study of reaction-diffusion equations.
These are equations of the form

(1.2) Ui=DU,+F(U, )
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where U € R™, D is a nonnegative diagonal matrix, and A € R is a parameter. A traveling
wave solution of (1.2) is a solution of the form U(x, t)= V(z), z=x+ 6t. That is, it
corresponds to solutions that appear to be traveling with constant shape and velocity.
We are interested in traveling wave solutions of (1.2) that connect two rest points of
(1.2). Assume that A, BeR" satisfies F(A, )= F(B,A) =0 for all A. Here, O is the
origin in R". We consider traveling wave solutions of (1.2) that satisfy

lim V(z)=A and lim V(z)=B.

Z->—00 z->+00

Note that a traveling wave solution satisfies the following system of ordinary
differential equations:

DV"—9V'+ F(V,A)=0.
If we let V'= W, then this is equivalent to the first-order system
(1.3) V=W, DW'=0W-F(V,\)
together with the boundary conditions

lim (V(z), W(z))=(A,0) and Ilim (V(z), W(z))=(B, 0).

Z—>—00 z—=>+00
Hence, the problem of proving the existence of a traveling wave solution of (1.2)
reduces to finding a heteroclinic solution of (1.3). Note that the speed 6 is a parameter
in (1.3). Hence, (1.3) depends on two parameters and is a special case of (1.1).

Many systems possess a variety of traveling wave solutions. A given system may
have, for a given value of parameters, traveling fronts, pulses, multiple pulses, and
periodic solutions. If a given system does have many traveling wave solutions, then
the existence of some of them (the traveling fronts, perhaps) may be easy to prove,
while the existence of others (pulses, perhaps) may be more difficult to prove. Our
results demonstrate that the more complicated waves can arise as bifurcations of the
simpler waves. In § 6 we present an example to illustrate this point.

The proofs of our results are based on an idea of Sil'nikov [8], [11], [12]. It begins
with a Poincaré return map on certain proper cross sections of the heteroclinic orbits.
With Sil’nikov’s change of variables for these Poincaré maps, the problem reduces to
a two-parameter family of transcendental equations. The uniqueness of homoclinic
and periodic orbits follows from an Implicit Function Theorem argument. The existence
of homoclinic and periodic orbits is derived from certain bifurcation equations that
arise from the transcendental equations.

A precise statement of our results is given in § 2. In § 3 we define Poincaré maps
on certain proper cross sections and explain the idea of Sil’nikov’s change of variables
for these Poincaré maps. In § 4 we prove the uniqueness of the homoclinic and periodic
orbits. In § 5 we derive the bifurcation equations for the existence of the homoclinic
and periodic orbits, and then prove the main results. In § 6 we show how our results
apply to the FitzHugh-Nagumo equations.

We point out that we can weaken considerably the generic hypothesis of the results
presented in this paper and still conclude that there exists a bifurcation of homoclinic
orbits. In [3] we prove such a result. This result is described at the end of § 2. Of
course, under the weaker hypotheses we cannot expect to obtain the detailed description
of the nature of the bifurcating orbits obtained in this paper.

2. Statement of the main result. In this section we will first introduce the main
hypotheses (H1)-(H8), and then state our main theorem. We also state our main
theorem in [3] for comparison.
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Consider a system of ordinary differential equations with parameter «

(2.1) 2=F(z, @)

where z=(z", .-+, z")eR? and a =(a,, a,) €R®. We assume that (2.1) has two

distinct hyperbolic equilibria a, and a, for all a. We also assume that when a = (0, 0),
(2.1) has a heteroclinic orbit T';, from a, to a, and another heteroclinic orbit I',, from
a, to a,.

Let C;=C;(a)= DF(a;, a), i=1,2, where D is the differentiation operator with
respect to z. Let o; = o;(a) be the spectrum of C,, i.e.,
2.2) o(a)={Ar eC]|A is an eigenvalue of C;}.
Let o7 = o/ (a) and o7 = o; (a) be defined as follows:
2.3) o (a)=0;N{AeC|Re A >0}
2.4) oi(a)=0;N{reC|Re A <0}.

Itis clear from the hyperbolicity of equilibria a;, i = 1, 2 and the existence of heteroclinic
orbits I';, and I',, that for a = (0, 0),

(2.5) ol 2D, o #J,
and
(2.6) o;=0;Uo7.

Let w; = u;(a) with
.7 pila) = miq Re A.

A€o
Then (2.4) and (2.5) imply
(2.8) > 0.

First, we consider two conditions on the eigenvalues that are not required in [3].

(H1) Wi is a simple real eigenvalue for C; for i=1,2 and
(2.9) pi< min Rea, i=1,2,
reoT—{m}

(H2) w; < —max Re A, i=1,2.
A€o
For many problems of homoclinic bifurcations, hypotheses (H1) and (H2) play
a crucial role in determining the bifurcation structure. For example, it is well known
that if the first eigenvalue of o™ is a pair of complex eigenvalues rather than a simple
real one as in (H1), then the system has an invariant set carrying the Bernoulli shift
(see Sil'nikov [18]). Also, if the largest eigenvalue of o~ is real and simple and if its
absolute value is equal to the first eigenvalue of o™ (this will violate (H2)), then in
any small neighborhood of the homoclinic orbit the periodic orbits are no longer
unique for small &« =0. Furthermore, double-periodic and double-homoclinic orbits
may occur in the latter case (see Yanagida [16] and Chow, Deng, and Fiedler [17]).
However, as we will show, if (H1) and (H2) are satisfied in addition to other hypotheses,
then the bifurcations of homoclinic and periodic orbits from the heteroclinic loop
I',,UT,, are unique.
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Let m;>0 and n;> 0 be the dimensions of the stable and unstable manifolds of
a;, respectively. As in [3], we assume the following hypothesis.

(H3) m,=my,=m and n,=n,=n.

Because of (H3) it is well known (see Hale and Lin [6] and Palmer [9]) that the
continuation of heteroclinic orbits I'j,(I';;) occurs generically in a codimension-1
submanifold in the space of vector fields. This implies that (H4)-(H6) are all generic.

(H4) I';; and I';; are in general position:
codim span {T,W7{, T,W3} =1, pely,,
codim span {T, W3, T,Wi}=1, pel,,,

where W} and W; denote the stable and unstable manifolds of a; fori=1, 2
at « =(0,0), and T,W denotes the tangent space of a given manifold W at
basepoint p.

We also assume that there are two smooth curves intersecting transversally in the
parameter spaces that correspond to the smooth branches of heteroclinic orbits from
a, to a, and from a, to a,, respectively. Thus, up to a change of coordinates in
parameter space, we assume the following hypothesis.

(H5) Equation (2.1) has a smooth branch of heteroclinic orbits I',, from a, to a,
with (a;,0)eR* and I',=T',,. Equation (2.1) has a smooth branch of hetero-
clinic orbit T,,, from a, to a, with (0, @,) €eR* and [',=T5,.

The next hypothesis (H6) is related to the transverse crossing of the stable and
unstable manifolds as parameters vary. To be more precise, let Wi(a) and Wi (a)
denote the stable and unstable manifolds of a;, i = 1, 2 for (2.1) at a. Clearly, W;(0,0) =
Wi and W}(0,0)= W}, where W; and W/ are as in (H4). Let X, be an arbitrary and
small (d —1)-dimensional cross section such that X, intersects I';, at exactly one point,
and X, is transverse to the flow of (2.1) for @ = (0, 0). Let M} = M{(a) and M5= M}(a)
be connected components of Wi(a)N X, and W3(a)NX,, respectively, satisfying that
M7 and M3 vary continuously with @ near a =0 and

(2.10) MI(0)NM30)=T,,NZ,.
Let d, =d,(a,, a,) be the distance between M} and M3 defined by
(2.11) di(a,, ay)=inf|z;—z,|  with z;e M} and z,e M3.

Similarly, we can choose a proper cross section X, transverse to I',; and their distance
d,=d,(a,, a,). It is easy to see that hypothesis (H5) implies

(2.12) di(a;,0)=0.

Similarly, we have

(2.13) dy(0, a,) =0.

We assume hypothesis (H6).

(H6) W1 and W3, and W3 and W] intersect transversally in the following sense:
tim 44092 Lo ang g 2200

ay—>0 |a2| a;->0 |a1|
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Note that (H6) implies d,(0, a,) has the same order as |a,|. This is certainly a
generic assumption. The conditions here appear weaker than the usual conditions on
the transverse crossing of stable and unstable manifolds. In § 5 we will see that together
with the other hypotheses, (H6) does imply the transverse crossing in the usual sense.
Indeed, the Melnikov functions in R? are precisely the distances d, and d,. Also, from
(2.11) we know that d, depends on the choice of cross section X,. However, it is not
difficult to see that because the map induced by the flow of (2.1) from one cross section
to another is a diffeomorphism, assumption (H6) is actually independent of the choice
of cross sections.

It is clear that hypotheses (H4)-(H6) are concerned with the global structure of
the stable and unstable manifolds. The following two hypotheses, (H7) and (H8),
however, are concerned with both the global and local structure of the unstable
manifolds near the equilibria. It is shown in Deng [ 5] that they are generic assumptions.

(H7) T';, is tangent to an eigenvector of C,(0) for the eigenvalue w,(0) as t > —o0;
I',, is tangent to an eigenvector of C,(0) for the eigenvalue u,(0) as t > —co.

Hypothesis (H8) is concerned with the inclination behavior of the global unstable
manifold of one equilibrium near the other equilibrium. This has to do with the local
strong unstable manifold W}* of q; that is (n —1)-dimensional and is tangent at q; to
the linear subspace spanned by the eigenvectors of C; corresponding to the eigenvalues
A € o7 —{u;}. To be more precise, let (x, y) be local coordinates of points in a sufficiently
small neighborhood U; of a; such that x =0 and y =0 correspond to the subspaces
spanned by eigenvectors of A € o7 and A € o; , respectively. In particular, choose the
yV-axis as the direction of an eigenvector for the principal eigenvalue w; of C;. Then
Wi can be expressed as the graph of a smooth function h** of the variable j =
(»?,- -+, y™) that parameterizes the strong unstable eigenvector subspace of eigen-
values A € o} —{u;}.

DEFINITION. An (n—1)-dimensional smooth manifold D"~' having nonempty
intersection with the stable manifold W7 satisfies the strong inclination property if for
every € >0 there is a T(e)>0 such that for every 1= T(¢) the connected component
of the image D}™' in U; under the time ¢t mapping of the solutions with initial data
from D" ! can be expressed as the graph of a smooth function h, of the same argument
7 as h* satisfying ||h, —h"*| o' <&, where ||| ' denotes the usual C' norm.

It is shown in Deng [5] that this strong inclination property holds true for a
generic family of such D"'. The corresponding result is referred to as the strong
A-lemma for D""" in [5]. Now, let M}(0) and M}(0) be as in (2.10) and (H6). They
are (n—1)-dimensional and intersect W3(0) and W3(0) at a single point, respectively.
We assume hypothesis (H8).

(H8) M7{(0) and M;(0) satisfy the strong inclination property (cf. Fig. 2.1).

Note that by Deng [5], (H7) is equivalent to [',, N W{*= and [,, N W3*=.
Also, due to the group property of the flow, it is not difficult to see that (HS8) is
independent of the choice of the cross section X, and X, in the definitions of M} and
M3 . Together with (H4), hypothesis (H8) will enable us to choose a one-dimensional
subspace ~ complementary to the (d—2)-dimensional subspace  of
span {T,W3(0), T,M{(0)} in T2, = R at p= W3(0)N M¥(0)=T,,NZ,. We will see
that if =, is sufficiently close to the equilibrium a,, then this complementary subspace
can be chosen approximately to be the eigenvector subspace of the principal positive
eigenvalue u,(0) for C,(0) provided (HB) is satisfied. All this will be done in §§ 4 and
5. As shown by the following main result, a system satisfying the eigenvalue conditions
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21

F12\<—7Mu

1
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(H1)-(H3) as well as the strong inclination properties (H7) and (H8) is analogous to
the classical system considered by Sil’nikov in [12] which has a homoclinic orbit and
satisfies conditions (H1), (H2), (H7), and (H8).

THEOREM 2.1. Suppose F is C* with k= 4 and (H1)-(H8) are satisfied. Then there
exists a small neighborhood N < R? of T',,UT,, U {a,, a,}, a small neighborhood V < R*
of a =(0,0), and a nonsingular change of parameters € = c(a), € € E = ¢(V), such that
the following holds true.

(a) There exist smooth functions &, = k,(&,) defined for £,>0, (&,, €,) € E, and
e,=k,(&,) defined for £,>0, (&,, &,) € E such that if

6,={ec E|e,=k(¢,), £,>0}
and
={ec E|e,=ky(¢,), &,> 0},

then, for i=1,2, (2.1) has a homoclinic orbit y< N to a; with parameter « if and only
if e = c(a) € 6;. Moreover, for each a with c(a)€ €;, vy is unique in N. Furthermore,

(2.14) (81,0)=c((a;,0)) and (0, &) =c((0, ay)),
(2.15) lmol ki(e,) = lm(‘)l k,(g,) =0,
(2.16) tim, G (e2) = lim 2 (e1) =0,
(b) Let
(2.17) A={e=(e,, &,) € E | either £,>0 or £,>0,

e,>ki(e,) if £,>0, and £,> ky(¢g;) if ,>0}.

Then, (2.1) has a periodic orbit y< N at parameter « if and only if c(a) € A. Finally,
for each parameter o with c(a) € A, vy is the unique periodic orbit in N.

Figure 2.2 is the bifurcation diagram for Theorem 2.1.

As we mentioned in the Introduction, we can weaken the hypotheses of Theorem
2.1 and still prove the existence of bifurcating homoclinic orbits. In [3] we prove the
following result.

THEOREM 2.2. Suppose F is C* and hypotheses (H3)-(H6) are satisfied. Then there
is a continuous map « : (0, 1]->R? such that for each s (0,1], (2.1) has a homoclinic
orbit to a, for a = k(s). If s,# s,, then the corresponding connections are not the same.
Moreover, lim,_ o+ k(s) = (0, 0). Finally, the same conclusion applies to a,.
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FIG. 2.2

Remark 2.3. The eigenvalue conditions (H1) and (H2) and the strong inclination
properties (H7) and (H8) are required for the implicit function principle argument in
this paper, which results in the uniqueness of the homoclinic and periodic orbits
bifurcating from the loop I';, UT',;. These conditions are not required in Theorem 2.2.
Theorem 2.2 asserts the bifurcation of homoclinic orbits must take place even though
uniqueness is not claimed. The importance of Theorem 2.2 as well as its topological
approach presented in [3] is to help us understand better the structure of vector fields
near a codimension-2 bifurcation point at which a heteroclinic loop I';,UT',; takes
place. It tells us that this bifurcation point is precisely located at the intersection of
the closures of two codimension-1 bifurcation branches on which the homoclinic
bifurcations take place. Similar topological structures near a vector field that represents
higher than codimension-2 bifurcation points at which a heteroclinic loop takes place
should also be expected. As suggested by Theorem 2.2, this has to do with a further
relaxation on the condition of equal dimensionality dim Wj=dim W;=m and
dim W7{=dim W3 = n required by both Theorems 2.1 and 2.2. Also note that the vector
fields in Theorem 2.2 are assumed to be only C>.

3. Poincaré maps and Sil’nikov’s change of variables. A natural approach to this
bifurcation problem is through the study of Poincaré maps for the loop I'),UT,; U
{ai, a,}. To do this we need a result by Deng [5].

THEOREM 3.1. Suppose that the system of ordinary differential equations with
parameter a,

x=A(a)x+f(x,y,a),
y=B(a)y+g(x,y, a),
satisfies the following hypotheses:

3.1

xeR™, yeR", acR?
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(H9) The matrix functions A= A(a) e R™™", B = B(a) e R"*" and the vector functions
f=f(xy a), g=g(xy, a) are C* with k=3,
(H10)  f(0,y,a)=0, g(x,0,a)=0,
Df(0,0, @) =0, Dg(0,0, ) =0
where D is the differentiation operator with respect to z = (x, y),

(H11) B has the following form:

pu(a) 0 ]

2 B=

3-2) [ 0 Bya)

and satisfies

3.3) 0<u(a)< min Re A,
reo(By(a))—{u(a)}

(3.4) O0<u(a)<— min ReA.

Aeo(A(a))

Then there exist sufficiently small constants 6,>0 and a, such that for every s=0,
|x0l = 80, (31| =80, and |a|=ay,, (3.1) has a unique solution x(t)=x(t;s, Xo, y1, @),
y(t) =y(t; s, X0, 1, @) satisfying

(3'5) x(0)=x0a Y(S)=Y1,
(3.6) Ix(8)|=28,, |y(1)|=28,, 0=t=1,

where ty> s is some constant depending on 8, s, x,, and y,. Furthermore, as functions of
t, 5, X0, ¥, and a the solution (x, y)(t; s, X, y1, @) is C* and C**" in t. Also, there exist
constants Ko=1 and %> 0, which depend only on u(a) and A(a), and a C*? function
¢ = @(x, ¥1, @) €R" such that

k—1 .
(37) z IDIX(S; S, Xo, ylaa)|§K0 e—/\(a)s’
j=0

k-2 X
(3'8) 'ZO |Dl(e“(a)sy(0; Sa xO’ yl, a) - ‘P(xO, yla a))l § KO e—VS
j=

where D’ is the differentiation operator of order j in (s, xo, y,, a). Moreover, the function
¢ satisfies

0 010 0

0 000 0
(3.9) De(0,0, )=

0 00 0 0 nxa

where D is the first-order differentiation operator in (x,, y,). Finally, the local strong
unstable manifold Wi, can be expressed as follows:

(3.10) {(0, )90, y, @) =0, |y| = 86} = Wicx

where ¢ = (o™, - - -, ™).

Remark 3.2. (a) Note that if s=0, then x(t)=x(t;0,x,,y;, ), y(t)=
y(t; 0, xo, ¥1, ) is the unique solution of the initial value problem x(0) = x,, y(0) =y,
with yo=y, for (3.1). This kind of boundary value problem was first introduced by
Sil’nikov [11] for the study of the structure of flows near a homoclinic orbit.
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(b) We will not need the exponential estimates (3.7) and (3.8) in Theorem 3.1 in
this section. However, they are useful in later sections. In particular, the estimate (3.8)
is extremely important and is equivalent to writing y(0;s,xo,y;, @)=
(X0, 1, @)e )+ R(s, xo, y1, @) with a C*7? function R all of whose derivatives
up to order k—2 are exponentially bounded by K, e”*“(“*”* This decomposition of
y(0) is referred to as an exponential expansion in [5].

(c) The properties (3.9) and (3.10) on the coefficient function ¢ for the exponential
expansion will be used later to construct a one-dimensional subspace complementary
to the span{T,W5(0), T,M}(0)} in T,2,=R*"" at p= W3(0) N M}(0)=T,,N =, men-
tioned earlier when (H8) on the strong inclination property for M} (0) was introduced.

To apply Theorem 3.1, we first observe that by a smooth change of variables in
a small neighborhood U; of a;, (2.1) is C* conjugate in U; to equations in the following
form:

xX= Ai(a)x +.ﬂ(x, Vs a),
y’—: Bi(a)y+gi(x, Vs a),

Here A;, B, f;, g and C*™!, and £, and g; satisfy (H10) for i = 1, 2. Furthermore, (H1)
and (H2) imply that A; and B; satisfy (H11). Thus, Theorem 3.1 is applicable to (3.11)
for i=1 and 2. It is not difficult to see that we may choose a single §, from Theorem
3.1 such that the conclusions hold true for (3.11) for i =1 and 2. We will use this §,
to define several cross sections to the loop I';,UT,, U {a,, a,} and to the maps along
them.

Since the discussion in the following few paragraphs applies to both a, and a,,
we will treat only a; and, therefore, suppress all the subscripts of a. Also, we will
suppress the parameter « if doing so does not cause confusion.

First, we specify some notation used in this paper. Let pe W}, .N{l;,UT,} and
ge Wi .N{l',UT,}. Write

(3.11) xeR™, yeR", acR’

(3.12) p=(%,0), q=1(0, 7).
By (H7), we may choose 7, = (7", - - -, 7\") to satisfy
(3.13) 7= 8.

For simplicity, we assume that

(3.14) V=8,

where %,= (%", - -, £{™). We remark that (3.14) will not be used in any proof and

therefore is not essential. Let §,> 8, > 0 and 8,> §,> 0 be arbitrary small constants, and
(3.15) 25(8;) ={(x, J’)lx(l) =80, |x — Xo| <8y, |yl <81},
(3.16) 24(82) ={(x, J’)ly(l) =8, |x| < 8, |y — Jo| < 85}

Note that for sufficiently small §,, (H1) implies that X" =X"(§,) is transverse to the
flow of (2.1). For simplicity, we assume, without loss of generality, that =° =3X°(8,) is
also transverse to the flow of (3.1) for small §,. Again, we emphasize that the forms
(3.14) and (3.15) are merely for simplicity in our discussion and will not be used in
our proof. Let z(t) = z(t; z,) denote the solution of (3.11) with initial data z(0) = z,,
and let z=(x, y).

Next, we define a local map near the equilibrium by the flow. Define
3.17) o® ={(xg, yo) € 2°|3s = 5(xo, yo) such that z(t; zo) € X"

for 0=t <s and z(s; z,) € X", where zo=(x,, yo)}-
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It is not difficult to see that since X° and X" are transverse to the flow of (3.11), §,
and 8, can be chosen so small that the function s:0° >R, which represents the first
time needed for the trajectory starting from o° to reach X* is well defined and
continuously differentiable. Define

(3.18) Tt >3
(X0, yo) = 2(s; 2o) with s =s(xo, yo) and zo= (o, yo)-
Obviously, = is a diffeomorphism onto its image. Let
(3.19) “=m(o’)
(see Fig. 3.1).

Applying the same arguments (3.12), (3.15)-(3.19) to (3.11) for i=1 and 2, we
obtain the following points, maps, etc.: p;, q;, 81, 812, 23, 2¢, o5, o ,and m;: 0} > o},
i=1,2.

Next, we define a global map near I';, by following the flow. Since ¢, and p, are
onI';,, there exists a unique ¢, > 0 such that z(t; q,) 2 25 for 0=t < t, and z(t;; q,) = p>.
Hence, by the Implicit Function Theorem, for every (x,, y,) € £} sufficiently close to
¢, there exists a unique time t, = t,(x,, yo) > 0, such that z(t; z,) €23 forall 0=t < t,,
2o= (X0, o), and z(1,; z,) € X3, that is, the first time for the trajectory to hit =3. It is
easy to see that we can choose §,, sufficiently small so that t,(x,, y) is smoothly
defined for all (x,, yo) € 2} and remains close to the constant ¢;. Define

(3.20) T 2] > 23
(x0, ¥o) = 2(ta, o) With t,=t,(xo, yo) and z,= (X, yo).

Obviously, 7y, is a diffeomorphism. Similarly, for a sufficiently small §,,, we can define
oy« 2; -> 2; .
Note that if

(3.21) m(of) = o3

then, a Poincaré return map @ = my;, * 7y * 7y, * 7 01> 2] is well defined. Since we
can always expect that (3.21) holds true for certain subset ¢{ < o, a map

— . . . S s
(3.22) T =Ty Ty Wyp* Tt 01> X

is always well defined. 7, is called a Poincaré map. Similarly, we may obtain the
other Poincaré map ,, (cf. Fig. 3.1).
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Now, the following discussion is devoted to the relation between the periodic
points of 7,; and the reduced equivalent equations. Naturally, a periodic orbit near
I';,UT,; corresponds to a periodic point of either 7, or m,,. Intuitively, the structure
of &7 is more complicated than that of o7. Thus, instead of studying the fixed points
of the Poincaré map m,, on &}, we consider the following equations:

i m(21) =25,
- ma22) =24,

It is obvious that the existence of fixed points for 7, is equivalent to the existence of
solutions z; and z, to (3.23). However, when we examine (3.17) and (3.18) for m,
(equivalently, m,), we find several difficulties. First, since p, € I, is on the local stable
manifold of a,, by (3.17) p, must not be in o]. Second, due to the hyperbolicity of
the equilibrium a,, the time s, = s,(x,, ¥o) needed for a point on the orbit to travel
from o to o} approaches infinity as (x,, ¥,) > p,. Moreover, the definitions for ,
and m, reveal few properties with which we can analyze (3.23). Usually, if we can find
a local change of variables near each a, and a, such that under the new variables the
nonlinear equation (3.1) becomes a system of linear equations in U, and U, then these
problems will be dramatically simplified. This so-called C'-linearization approach is
indeed quite common in literature. Our hypotheses (H1) and (H2) on the eigenvalues
are not sufficient to obtain such a C'-linearization in general. The approach to overcome
these difficulties is through a change of variables only on o] and ¢3. This idea is due
to Sil’nikov.

Let A, be a (d —1)-dimensional open set. Let p,: A;-> o] be a diffeomorphism
onto its image. Then p, is called a change of variables in oj. Let py, =7, - p;: A > o}
Similarly, we may have a change of variables p,, in o3. The purpose of such changes
of variables is to make the local maps p,; and p,, tractable. Before we introduce the
Sil’'nikov changes of variables, we note the following simple facts.

It is easy to see that to find solutions z, and z, to (3.23) it suffices to find solutions
to the following equations:

(3.23)

Z,ET], Z,€03.

m2 - pu(dy) = Pz(lz),
3.24
( ) 1 * p2(82) = pi(Lh),

However, the existence of solutions to (3.24) is only a sufficient condition for the
existence of solutions to (3.23). But we will see that by restricting periodic orbits of
(2.1) to a sufficiently small neighborhood N of I';,UT',, U{a;, a,}, we can guarantee
that the condition for the existence of solutions to (3.24) in some subsets Z\, c A, and
ﬁzc A, is both sufficient and necessary for the existence of certain types of periodic
orbits in N. This is to be explained as follows.

In this paper, a small neighborhood N of I';,UT,,U{a,, a,} satisfies

L1€edy, e,

(3.25) NNLicS:, i=1,2
where L} ={(x, y) e U;| xV = 8,, |x| = 8, |y| = 8o}. Let

(3.26) $:=NNZ,  i=1,2,
(3.27) =N, i=1,2.

Let v be a periodic (homoclinic) orbit in N; then vy is called a K-periodic (homoclinic)
orbit if the number of points in the set yN &;(yNcl d}) is exactly K. Certainly, for a
K-periodic (homoclinic) orbit y in N the number of points in y N &5(y Ncl &3) is also
equal to K. Moreover, if N is so small that

(3.28) gicpi(d), i=1,2

b 2
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then there exists a K-periodic orbit v in N, say K =1, if and only if (3.24) has solutions
{1€A; and ¢, € A, where
(3.29) Ai=pi'(6D), i=1,2.

We will put these observations into a lemma. Before doing so, we note that all definitions
for maps and sets as above extend immediately to the perturbed system of (2.1) with
a small parameter «. Thus, from now on we allow the arguments of m,, 7>, 73, p2,
P11, P22, €tc. to include the parameter a. But we write o} instead of oj(a), and so on.
Lemma 3.3. Let o}, o}, m;, i=1,2 be defined as in (3.17)-(3.19). Let m,,, 1, be
defined as in (3.20). Let p;, i=1,2 be a smooth map satisfying that for every a,
pi(+, a):Ai(a) > oi(a) is a diffeomorphism onto its images. Let
(3.30) pi(+, @) =m(p:(-, a), a):Ai(a) > of(a), i=1,2.

Then the following statements hold true:

(a) For each small « there exist a small neighborhood N of T',UT',, U{a,, a,} and
a K-periodic orbit vy in N if and only if the equations
7712(P11(§$j.)s a)s a) = p2(££j.)a a)’
7721(P22(£§J)’ a)a a) = pl({grﬂ)a a)’
have a solution
(3.32) (Wel(a), i=1,2, j=0,1,2, - (modK)

where &, i=1,2, are as in (3.29).
(b) For each small «a there exists a small neighborhood N of T',UT,,U{a,, a5}
and a K-homoclinic orbit vy to a, in N if and only if

m12((0, ), @) = p,({Y, @),
7721(P22(§gj), a))= P1(§§j+l), a),
ma(pn({Y"), @), @) = p (¢, @), j=0,1,2,- - (mod K ~1),
7721(P22(§§K_1), a), a)=(x,0),
have a solution with
0,x)efi(a),  (0,y)edi(a),
(Wel(a), i=1,2, j=0,1,2, - (mod K —1)

where $5(a)=3{N N and £¥(a)=3¢N N.

Remark 3.4. (a) A statement similar to (b) of Lemma 3.3 holds true for homoclinic
orbits to a,. (b) An immediate consequence of this lemma is that to find periodic or
homoclinic orbits near I" we can first solve (3.31) and (3.33) without the constraints
(3.32) and (3.34) associated with the small neighborhood N and then construct a
neighborhood N independent of a such that (3.32) or (3.34) holds true.

We now introduce the changes of variables p, and p,. Let 5,>0 be a constant.
Let A, =A(sy), i=1,2, be defined by

(335 Ai(so)={LeR L =(5,%0, y1), s> 50, (%,0) €2}, (0, y)) € 2]}

Let (x, y)(t) = (x, y)(; s, Xo, y1, @) be the solution of (3.11) satisfying (3.5). Define for
every small @« and i=1,2,

(3.36) pi(+,a):A;>3]  with (s, %, y1) = (x, ¥)(0).
We have the following lemma.

(3.31) j=0,1,2,- -+ (mod K)

(3.33)

(3.34)
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LeEMMA 3.5. There exists sufficiently large Sy> 0 such that for all s> S,, p;, defined
by (3.36), defines a change of variables in o;. Moreover, the corresponding local map
pii, defined by (3.30), is given by

(3.37) pi(-, a): ;>0 with (s, X0, y1) = (x, y)(s)

where i=1, 2.

Proof. 1t is obvious from Lemma 3.1 that p; is differentiable. The exponential
estimates in (3.7) and (3.8) imply that we can choose a sufficiently large S;> 0 such
that |y(0)|<8,, and |x(s)|<8,, for all s>s,=S, and (s, x,,y;)€A;. Since both
(x,y)(0)eX] and (x, y)(s)e X} are on the same orbit of (2.1), it follows from the
definitions (3.17) and (3.18) for m;, that (x, y)(0)eoi(a) and m;(x(0),y(0), @)=
(x, y)(s) € of(a). This, together with (3.30) implies (3.37).

To show that p;(-, @) is a diffeomorphism, recall the smooth scalar function s in
the definitions (3.17) and (3.18) for the local map ;. Note that

p:pi(A;, @) > A,
(X0, ¥0) = (8, X, (55 0, X0, ¥o, @)) With s =5(xo, yo),

is actually the inverse for p(-, «). Since g is also differentiable, p(-, @) must be a
local diffeomorphism. 0

4. Uniqueness of homoclinic and periodic orbits. According to Lemma 3.3 and (b)
of Remark 3.4, it suffices to consider (3.31) and (3.33) in the new variables in A, and
A, introduced by (3.35) and (3.36). In this section, we will use these equations and
prove the uniqueness of periodic and homoclinic orbits near I';, UT',; U {a,, a,} (Propo-
sition 4.1). To do so, we first rewrite the coordinates for X;, £/ and A; in some
equivalent forms. Throughout this section, i=1 or 2.

Since for all (x,y)eZ{, xV=8,, there exists an obvious correspondence
(x, y) < (¢, y) with

(4.1) E=(xP-xQ, -, x"=x) eR™
where p; = (X0, 0) is as in (3.12). Note that (¢ y)e R and

(42) 21 ={(& y)eR|[E] < i, Iy < 811}
Similarly, let

(43) =P -7, yW-Fi)er"
where ¢g; = (0, 7;;) is as in (3.12). Then, (3.16) can be expressed as
(4.4) 3 ={(x, n) eR*7||x| < 82, | m| < 8i2}

(cf. Fig. 3.1).

Under the new variables (&, y) and (x, n) for 2§ and X}, respectively, 7,: 2] > 23
can be expressed as

§=Pl(x’ ”I, a)’
(4.5) (x,m)eXf
y=Qmma),

where 7, = (P,, Q,) is a diffecomorphism. Similarly, we have m,,; = (P,, Q,): 25> X1.
In view of these changes of variables, the following correspondence is also a valid
change of variables for both A, and A,:

(4'6) (s, x’ y) -> (T’ §’ n)
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where (s, x, y) € A; is as in (3.35), x and ¢ and y and 7 are related through (4.1) and
(4.3), respectively, and

4.7) 7= e M,

Hence, (3.35) for A; can be expressed as

(4.8) Ai={(r,£n)eR0<T<1,, |€]< 8i1, || < 8in}
where
(4.9) o= e *(*%,

Note that A; depends on the parameter «, which is suppressed for simplicity of notation.
In the new variables for A,;, let

(4.10) X(m & m, a)=x(s;8, X0, Y1, @),
(4.11) Y(7, & m @) =y(0; 5, X0, 31, @),
and

(4.12) ¥(&m, @)= (xo, 1, @)

where the solution (x, y)(¢) = (x, y)(t; s, X0, 1, @) and the function ¢ are as in Theorem
3.1, and (7, & m) and (s, x,, y,) are related by (4.6) and (4.7). It is not difficult to see

that from (3.7), (3.5), (4.7), (4.10)-(4.12) there exists a smooth function R = R(7, &, 1, a)
such that

(4.13) ‘iD"X =0(7"),
oT
(4.14) Y=mp(&n, a)+R(7, &1, a),
1
0
(4.15) (& m a)=8 | - |+O(¢+[n])d
0
and
(4.16) ’inR - 0(r).
oT

Here, the differentiation operator D’ involves derivatives only with respect to & n and
a, j=k—3, and the constant v satisfies

A -
(4.17) 0< V<min{ CIN } laj« 1
p(a) p(a)

where A is as in (3.6) and 7 is as in (3.8). To avoid confusion, we write X;, Y;, ¢,
and R; to denote the functions in (4.10), (4.11), (4.12), and (4.14), respectively, from
A,

An important observation from (4.13)-(4.16) is that the functions X and Y can
be C' extended to 7=0. For simplicity, let X and Y denote such extensions in the
extended region:

(4.18) A ={(r, & n) eR* ||| <70, €] < 811, || < 812}
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Obviously,
(4.19) A =8,N{(r, & n)eR*"|r>0}.

Note that both A, and A, depend on «. But, for the simplicity of notation, it is suppressed
from the arguments.

Now, let us consider (3.31) and (3.33) for the periodic and homoclinic orbits near
I',UT,,. Let K=1, and ¢ e (A, xA,)X with

(420) ¢=(7, &0, m1, 70, €0, ma, L, L E Tl L L E T ST,
Let

(4.21) Xi=X(r],¢,nl,a) and Yi=Y(7}, &, 1], @)

where

(4.22) (4, &, ndeA,, i=1,2, j=0,1,2---.

Then, it is not difficult to see that in the new variables 7, £ and 7, equation (3.31) for
periodic orbits is equivalent to

(4.23) D(L, a)=0
where

—Yi+Qu(X1, 7}, @)
=&+ Py(X Y, ), @)
- Y}i+1+ Q2(X]23 7’]2, a)

(4.24) d(L a)= ,j=0,1,2,- -+ (mod K).

In particular, the estimates (4.13) and (4.16), (4.21), and (4.24) imply that (§.33)~for
the K-homoclinic orbits to a, is actually equivalent to (4.23) with fe(A,x A"
satisfying

(4.25) 79=0, (0,¢%,n0)el,, (13,8,79¢eAh,
and
(4.26) (rl, &, mDed, i=1,2, j=1,2,- -, K-1.

This shows that we only need to treat (4.23) uniformly in the extended domain (A, x A,
for both the homoclinic and periodic orbits. Moreover, due to the following results
(Theorem 4.2) on the uniqueness of periodic and homoclinic orbits in a small neighbor-
hood N, we will see that we actually only have to consider (4.23) with K =1. In this
case, the correspondence between a solution (7, &, 0, 72, &, 1,) of ®=0 and an
orbit are as follows:

(a) 7, =7,=0 corresponds to the heteroclinic loop from a; to a, and from a,
to a,,

(b) 7,=0 and 7,> 0 corresponds to a homoclinic orbit from a, to a,,

(¢) 7,>0 and 7, =0 corresponds to a homoclinic orbit from a, to a,,

(d) 7;>0 and 7,> 0 corresponds to a periodic orbit.

In this section we will show that ® =0 always has a unique solution for small «
in the extended domain by Implicit Function Theorem arguments. However, it is
obvious to see that the existence of solutions to ® =0 does not always imply the
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constraints 7, =0 and 7, =0 as required. Therefore, to get ;=0 and 7, =0 for certain
parameters, we need to derive some bifurcation equations from (4.23). This is to be
done in the next section. We now have our results (Proposition 4.1 and Theorem 4.2)
on the uniqueness of homoclinic and periodic orbits near I';, UT,, U {a,, a,}.

ProrosITION 4.1. Suppose (2.1) satisfies (Hl) (H3) and (4.23) satisfies the follow-
ing conditions in the extended domain (A1 X Az)

(4.27) If * = (=¥, §1 , ¥, 7'2 s §2 , ¥)e A, XA, is a solution to (4.23), with K =1,
then (¢*,+ -+, *)e (A, % AZ) is also a solution to (4.23) with K > 1.

(4.28) For every small o, with K =1, (4.29) has a unique solution {*.
(4.29) For every small « and every K > 1, the solution of (4.23) in (A, xA)K is unique.

Then, for every small « there exists at most one periodic or homoclinic orbit near
I'.NTI,, U{a,, a,}, but not both. Moreover, only simple (K =1) periodic or homoclinic
orbits can exist.
Proof. Suppose there exist two orbits y, and vy,, each of which is a periodic or
homocllmc orbit. Then, there exist K;=1 and K,=1 such that (4.23) has a solution
¥ for K; and ¢¥ for K, with {f satisfying either (4.22), or (4.25) and (4.26). Let
¢ * e A, x A, be the solution to (4.23) with K =1 guaranteed by the hypothesis (4.28).
Then, hypotheses (4.27) and (4.29) imply

(4.30) E=(*, -, e (A xB)S,  i=1,2

This implies that £* must satisfy either (4.22), or (4.25) and (4.26). That is, there exists
a simple periodic or homoclinic orbit near I';, UT',; U{a,, a,}. Furthermore, (4.30)
forces K;, K, =1, and (¥ = {¥={*. This completes the proof. 0

Finally, we have Theorem 4.2.

THEOREM 4.2. Suppose that hypotheses (H1)-(H4), (H7), and (H8) are satisfied.
Then there exists a neighborhood N of ', UT,, U{a,, a,} and a neighborhood O if a =0
such that for all small a, there exists at most one homoclinic or periodic orbit in N, but
not both. Moreover, only simple (K =1) homoclinic or periodic orbits can exist.

Proof. Note that (4.27)-(4.29) and Remark 3.4(b) of Lemma 3.3 imply the existence
of such a neighborhood N. Hence, to prove the theorem it suffices to verify (4.27)-(4.29).

Condition (4.27) simply follows the definition (4.24) for ®. To verify (4.28) and
(4.29), we apply the Implicit Function Theorem to (4.23).

Let K =1. Then {= (7}, &), n?, 13, &5, ) e R*“~Y. The existence of I';, and T,
when a =0 implies that

(4.31) ®(0, 0) =0.

Since @ is C', a simple calculation together with the eigenvalue conditions (H1) and
(H2) implies

0 0 aPyo/dm 0 it 0

192(0 0)= 0 0 3Q10/3m  —¥0 0 0
oL 0 =1, 0 0 0 dP,y/3m
~¥10 0 0 0 0 8Q20/ M

where aRO/aT’ aP/aTl (0 0 0)9 anO/aT' an/a"fI (0 0 0), l,[/,o ¢l (0 0 O)a and i=
1, 2. This matrix becomes diagonal through permutation, making the first two column
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blocks into the last two column blocks. Then, it is easy to have
od [s] d

(4.32) det >— (0, 0) = (—~1)" det [&, ./,20] det [—QE, ¢10].
14 an an

We will show that (4.32) does not vanish.
Observe that the column vectors of the (d —1) x (d —2) matrix

dPyo/dm "Im—l]
4.33 M =[
( ) ' 8Q10/97m 0
span the subspace
(4.34) span {T, W3, T,W{}n T,X;

where p=T,n2; is as in (3.12). This is because T,W;=R"™x{0} and T,W{=
Im (D,7,5(0, 0)) X span {T,I';,}. Since W3 and WY are in general position (see (HS))
and X} is transverse to I';,, we have

(4.35) rank M, =d —2.

Moreover, if 8, is as in Theorem 3.1, then, by (3.10) and (4.15) and the strong inclination

property (H8), the vector (0, ¢,) = (0, ¥,(0, 0, 0)) e R? "' is complementary to the inter-
section of span {T,W5, T,W{} with T,%;. This implies

(4.36) rank [M,,[ 0 ]] =d-1
(//20 (d—-1)x(d—-1)
and thus,
0 ]
(4.37) det [Ml, [d, ]] = (=1)"*D0m=D get [ fn“’, l/’zo] #0.
20

Similarly, we can show that
d
(4.38) det [—@ .p,o] #0.
an
We now conclude from (4.32) that
od
(4.39) det o (0,0) #0.

It follows from the Implicit Function Theorem that there exist neighborhoods O of
£=0€A,xA, and V of a=(0,0) in R?, and a C' function ¢*={*(a), a €V, with
{*(a)€ O for all a€ V and

(4.40) £*(0)=0
such that ¢* is the unique solution to (4.23). Note that by the Implicit Function
Theorem, we also have that

(4.41) det%(;,a);éo, €0, acV.

This proves (4.28).

Next, we verify (4.29). Let K>1 and consider (4.23) in (A, xA,)X. The same
reasoning as for (4.31) yields

(4.42) ®(0,0)=0.



196 S.-N. CHOW, B. DENG, AND D. TERMAN

Also, since ® is C', simple calculation yields

0O 0 = 0 —-I 0
0 0 = == 0 O
0 0 = 0 —-I0
oD 0O 0 = *= 0 O
(4.43) detg-(—(0,0)= 0 0 % 0 —I 0
0 0 = = 0 0
0 -10 0 0 =
* 0 0 0 0 =

where all nonspecified entries are zero. Similarly, by permutation we obtain a diagonal
matrix such that every block of the form

[* 0 -I]

* x 0

in the diagonal is one of the following:

dP;o/dn 0 -1,

[aQio/a"l —0 0

By direct computation

(4.44) det% (0,0)= (—l)m(det [6;21;0’ 4,20] - det ["f;“, ¢,0])K <0

because of (4.37) and (4.38). Moreover, it is not hard to see that (4.41) implies

], i,j=1,2, i#j

(4.45) det%%({,a)=0, (e O acV.

Hence, by the Implicit Function Theorem, equation (4.23) with K > 1 has a unique
solution ¢* = {*(a) for every a € V, ¢*is C', and {*(a) € O for all a € V. This proves
(4.29). 0

5. Bifurcation equations and proof of Theorem 2.1. From Theorem 4.2 it follows
that a homoclinic or periodic orbit must satisfy

(5.1) ®(L,a)=0, [eh,xA,, acR?
With { = (Tl 1) §1 s M T2, 52’ "72), Ti € R’ gl' € Rm_la Ni € Rn_d, and

=&+ P(Xy, m, @)

-Y,+ QX
(5.2) O, a) = 2+ Qi( Xy, My, @)

=&+ Py( X5, M2, @)

=Y+ QxXz, m2, @)
Here, X; = X (7, &, mi, @), Y;= Y(7, &, m:) €A, and (P, Q,) are as in § 4. Recall, from
the discussion given before Proposition 4.1, that the existence of homoclinic and
periodic solutions is equivalent to the existence of solutions ¢ € A; X A, of (5.1) satisfying
(5.3) =0, 7,=0, 7,+71,#0.

Also, a solution ¢ of (5.1) with 7, = 7, =0 corresponds to the existence of a heteroclinic
loop. Hence, the modified condition of (5.3):

(5.4) 7120 and 7,20
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for solutions ¢ of (5.1) is equivalent to the existence of a homoclinic, periodic, or
heteroclinic loop nearI'), UT,, U{a,, a,}. From Theorem 4.2 it follows that any solution
to (5.1) for @ € V must be £*=*(a) = (7¥, ¥, n¥, ¥, €8, n¥) € O, where O, V, and
{* are as in (4.40). Therefore, we need to verify that there exists a subset A< V such
that

(5.5) {*eQ if and only if a €A,
where
(5.6) Q=0N{Lebd,xA,|{=(r1, 8, M, T2y &, M), M2 0, 7,20},

This will be true if the mapping h:a - (7§(a), 7¥(a)) e R? is a diffeomorphism near
a =0. Indeed, this is what we will prove in this section.

It is difficult to prove the nonsingularity of the mapping h by directly working
with 7¥, 7§ and (5.1). Instead, we solve (5.1) in a way different from § 4 so that the
correspondence between 7F, 75 and a can be easily determined through some bifurca-

tion equations. To do so, we need the following notation. For y = (y*, - - -, y") e R",
let
(5.7) =02,y erm
For z=(x, y)eR™'xR", let
(5.8) F=(x,9)eR™ 'xR"",
Let
_§j+R(Xl’ Ni,s a) .o . .
(5.9) cb,.=( , ij=1,2, i%
~ Y+ Qi(X,, i, @) ! !

where X; and Y; are as in (5.2). Then, for ® defined by (5.2), we have

(]
(5.10) q>=( q);).
We first solve the equation
(5.11) D,(L,a)=0
where @, is as in (5.9). The existence of I';, and I, at @ =0 implies
(5.12) $,(0,0)=0.

Also, by (HS), the existence of the heteroclinic orbit I, for a =(a,, 0) implies that
(5.11) always has solutions 7, and &, for 7, =7,=0 and a =(a,,0). That is,

(5'13) QI(O’ "71,(011,0))=0 for some |"71|<< L
Also, let Ci), be given by (5.8). Then, from (5.12), we have that
(5.14) ®,(0,0)=0.
In addition, similarly to the computation for (4.32), it is easy to see that
oD, dPyo/om —Ipy
(5.15) ——(0,0)=[ =M
a(ny, &) 3Q10/0M 0 '
where M, dP,o/dn, and dQ,o/dn are as in (4.33). Thus, (4.35) implies
od
(5.16) rank ———(0,0) =d —2.

a("h s §2)
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Moreover, it is not difficult to see from (H8) of the strong inclination property and
(5.15) that

ad,
5.17 rank ———(0,0)=d —2.
( ) 3("71, §2)( )

Hence, by (5.14), (5.17), and the Implicit Function Theorem, there exist C' functions
a=a(z,a)eR" "and b=b(z,a)eR™", defined for ze R, @ e R* with |z|« 1, ||« 1,
such that

(5.18) $1(40)=0, gl«1, lal«1,
if and only if ¢ = ¢, (x, @), where
(5.19) Lx=(11, &1, M1, T2, &2, M) with my=a(x, @) and & =b(x, a),
and
x = (71, &, 72, M)
Moreover, the Implicit Function Theorem implies that
(5.20) a(0,0)=0 and 5(0,0)=0.

Now, by substituting ¢ ={,(x, @) into the remaining equation, the full system of
equation (5.11) is equivalent to the equation

(5.21a) D" (Lx(X, @), @) =0.

Next, we will derive an equation equivalent to (5.21a). To do so, we first note
some properties for the solution of (5.18). It is easy to see from (5.9) and (5.18) that
when 7, = 7, =0, the solutions 1, = a(x, @)|,,—.,—oand &= b(x, a)|,,—.,—o do not depend
on £, and 7m,. Thus

(5'21b) a, = a(X’ a)l‘rl='rz=0 and ba = b(Xa a)'rl=rz=0

are functions of the variable « alone. This observation is very important. Obviously,
we also have

(5.22) a—a,=0(n|+|rl) and b—b,=O0(r|+|rl).
Moreover, when 7, = 7,=0, (5.18) implies
—by+ P\ a
(5.23) ( A >=¢(§*(X, @), a) =0
la T1=72=0

where P, = P,(0, a,, a) and Q,, = Q,(0, a,, @). In particular,
(5.24) Q.=0, |a|«1.

Let aI)lcnr/a‘r’ =3P1/377 (0’ aaa a), anm/an =aQ1/377 (0’ Ay, Cl) and

aPiofom - m_l]

5.25 M, = .

(5:29) ‘ [aom/an 0
Then, by continuous dependence on «, by (5.15), and by (5.16), we have

(5.26) rank M,,=d —2.
In particular, by (5.17), we have

9Q14
(5.27) rank&-=n—l.
an
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Now, by (5.18), (5.24), and (5.25), a simple computation yields
T Qq mn-— a a m
(5.28) detl:M,a,CI)l({*,a)-Mm(a b“ )] =(=1)"™"" det [%]q:(l Ly, ).
n

Hence, (5.27) and (5.28) imply that the full system of equation (5.21b) is equivalent
to the following equation:

(5.29) det [M,,,, ®@,(Ly, @) —Ml,,(“ “b“a>] =0
where a=a(x, a), b=b(x, a), {*={,(x, @), and a, are as in (5.19) and (5.21a).

To simplify (5.29) further, we expand (P;, Q,) at (x, n) =(0, a,) and ¢, at (£, n) =
(b,, 0), respectively. Thus, by (5.22) we obtain

539 (i am) ~(0n) ity @ 2o, ) ot
(5.31) ¥a(b, m2) = Y0+ O(|na| + || +|72)

where ¢,, = ,(b,, 0). Also, from (5.31), (4.14), and (4.16) we have

(5.32) Yy(72, b, M2, @) = Yhaamat O(|mo |7 + || + |7 )

where »> 0 is as in (4.16). Now, substituting (5.30) with X, = X (7, &, a, @) and (5.32)
into (5.29), from (4.15) we obtain

() v [ (57

+ O(|")2| |7'2| + l”'lllw + |7'2|1+V) =0.
Note that by the continuous dependence on a and (4.36),

(5.33)

(5.34) det [Mla, ( 0 )] #0, la|« 1.
V2
Hence, (5.33) can be further simplified to
(5.39) 7= Co(ay, )+ O(ny| || + 7| + | 7' H)
where

(536) cz(al’ a2)=det [Mla’ (gla)]/det[Mla, (dlo )]

ProrosITION 5.1. In addition to (H1)-(H4), (H7), and (H8) as in Theorem 4.2,
suppose (HS5) and (H6) are also satisfied. Then for sufficiently small a

(5-37) CZ(CV],O):O

and

(5.38) 9% (0,0)%0
da,

where c, is given by (5.36).
Proof. If 7, =7,=0, then

(5.39) ®(L @)lsoro= (—§2+Pl(0, M2, a)>.

QI(O’ M2, CU)
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Moreover, (5.11) and (5.35) are equivalent. Thus, (5.13) and (5.35) imply (5.37). To
prove (5.38), we first conclude from (5.22) that

(540) det [Mla’(IQ) )]_( l)mn 14 t[aola]Q(l)

Since (0, a,)e Wi(a), m,(0, a,, a) = (P4, Qo) € Wi(a). Hence, (5.24) and (2.11)
with M (a)={m2(0, n, a)||n|« 1} =X and M3(a)={(x, 0)||x|« 1} =23, imply that

(5‘41) Oédl(al’a2)< lnf |(P1a’ Qla)—2|§|lea)‘

zeMz(a)
Moreover, by (HS)
(5.42) 0<d,(0, a,) for a,#0.

This and (5.41) imply Q\%) at a = (0, a,) with a, # 0 being nonzero. Suppose, Q}. >

for @ = (0, a;), @,> 0. Then, we conclude from the transverse crossing hypothesis (H6)
and (5.41) that

d (1)
(5.43) o< tim 0@ _ ) Qe

az——>0+ [2%) a2—>0 a
Since (5.37), (5.40), and (5.27) also imply Q{Y) =0 when a = (0, a,), it follows that

(5.44) lim Qi _3Q1

00" Q3 0ay |a=0

s a =(0, a2)‘

s a= (O’ a2)'

Now, it is easy to see that (5.38) follows from the quotient rule of differentiation,
(5.40), (5.43), and (5.44). 0

Now, from Proposition 5.1 and (5.35) we have the following lemma.

LEMMA 5.2. Suppose hypotheses (H1)-(H8) are satisfied. Then there exist a C'
function ¢,=c,(a,, a,) satisfying (5.37) and a C' function r,=ry(7,, &, 72, 02, @)
satisfying

(5.45) ol = O(|7I2||“'2|+|7'1|1+V+|72|1+V)

with v>0 such that (5.11) has a solution { = (1y, &, M1, T2, &2, M2) With ||« 1 and
|a|« 1 if and only if

(5.46) = C(ay, ay) + (7, &, 72, M2, @).

Note that by applying Lemma 5.2 to equation ®,({, a) =0, there also exist C'
functions ¢, = ¢,(a,, a,) and r, =r\(7,, &, 71, M1, @) such that equation ®,(¢, @) =0 is
equivalent to

(5.47) mi=clay, a))+ (7, &, 1, M, @).
In particular, by the proof of Theorem 4.2, if {*(a) = (7F, &€, 0¥, 7%, &5, n¥)(a) solves
(5.1), it must also satisfy (5.46) and (5.47) by Lemma 5.2. That is,
(5 48) T’lk=cl(al’a2)+rl(7.;k’ ik”rZanZa )
' 7'>2k=02(a1,a2)+r2(7'§k,§2,7'1,771,“)-

These equations are considered as bifurcation equations for (5.1). Now, we can easily
derive the following from (5.48).

Proof of Theorem 2.1. Without loss of generality, let V<R? be the same as in
Theorem 4.2. Since |{*(a)|= O(|al), (5.45) and (5.48) imply that

(5.49) 7f=cl(a1,a2)+0(|a|1+”), T2 —CZ(al, az)+0(|a|1+y)
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In addition, (5.37) and (5.38) imply that the change of parameters
(5.50) e=c(a)=(c(a, @), cx(@y, @3))
is nonsingular in V and satisfies (2.14) of Therorem 2.1. This and (5.49) imply that

¥, ) _[1 0]
=0 01 '

(5.51) —-—==

a(sl ’ 62)
That is the map h:e - (¥, r¥), which is a local diffeomorphism. Thus A in (5.5) and
(5.6) is now given as h'{r¥=0, 7¥=0}). In particular, the boundary h™'({r¥=0,
75> 0}) of A corresponds to a unique homoclinic orbit to a, and is given as follows:

0=¢,+0(e|'"™)

by (5.49). It is obvious that this boundary curve, corresp_onding to %, in our theorem,
and (2.15) and (2.16) follow immediately. The interior of A yields (2.17). This completes
the proof. O

6. Application. Consider the FitzHugh-Nagumo equations
(6.1) U = U, +f(u)—w, w, = e(u—yw).

We refer the readers to [4], [7], [10], and [13] for more details on these equations. In
(6.1) € and vy are positive constants with 0 <&« 1. For f(u), we take

fwy=u(l—u)(u-a), 0<a<i.
A traveling wave solution of (6.1) is a bounded, nonconstant solution of the form
(6'2) (u(x9 t), W(X, t))=(U(Z), W(Z)), z=x+ Gt, 0 = constant.

By substituting (6.2) into (6.1), (U, W) satisfies the following system of ordinary
differential equations:

(6.3) U=V, V=0V—f(U)+W, W =¢g(U-yW)/6.

If v is large enough, then there exist three rest points as shown in Fig. 6.1.

In what follows we let ¢ =(&,, %) be the point of intersection shown in Fig. 6.1,
and € =(%,, 0, €,) the corresponding rest point of (6.3). We take 0 = (0, 0, 0) as another
rest point.

By a pulse we mean a solution 'y =I'¢(z) of (6.3) that satisfies

lim T'g(z)=0.

|z|>+c0

w w
4 U=yW 4 U=YW
¢
/\w:«m w=£(U)
»U »U
6 \ c \

Smally Large y
FiG. 6.1
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By an &-pulse I'y we mean a solution that satisfies
lim Tg(z)=¢.
|z|»>+00
By a front wave I'r we mean a solution that satisfies
lim T'p(z)=% and lim I'p(z)=0.

z—>+00 Z—>—00
By a back wave I'; we mean a solution that satisfies
lim I'g(z)=0 and lim I'g(z)=4%.

Z—=>+00 Z-»—00

Throughout this discussion we assume that 0 < £ « 1. The relevant parameters are
then vy and the wave speed 6. It has been shown (see [1], [10]) that there exist constants
0 <y, < v, <3 such that we have the following:

(1) If y;<vy and 0< e« 1, then a front wave I'g exists for some 6, say 65(y).

(2) If y;<y<vy;and 0< e« 1, then a back wave I'g exists for some 6, say 65(y).

(3) Inthe limit £ - 0, the graphs of these differentiable functions 6(y) and 6z(y)
are approximately shown in Fig. 6.2.

0

Oa(v)
1 i
: -
05:(')’)
» Y
Y1 Y2 Ya
FI1G. 6.2

These two curves cross precisely at y = v,, in the limit £ » 0. For £ small, but not
zero, the curves 65(vy) and 0x(y) have the same qualitative features as shown in Fig.
6.2. For vy close to y,, 05(y)> 0x(y), while for y close to s, 65(y) < 0g(y). Hence
there must exist u* = (y*(e), 6*(e)) where the two curves cross.

It is not difficult to show that when 0 < &£ « 1, the linearizations of (5.3) at 0 and
€ have two negative eigenvalues and one positive eigenvalue. One of the negative
eigenvalues is zero in the limit £ >0 while the other two stay uniformly away from
zero as ¢ > 0. Thus, (H1)-(H3) are satisfied only for the time-reverse system of (6.3).
Hypothesis (H4) follows easily from (1)-(3) above. Hypothesis (H5) is always true
for systems in R®. As mentioned earlier (H6)-(H8) are generic (see Fig. 6.3). We can
verify these conditions do hold for (6.3) using the singular perturbation description
of the wave (see [1] and [10]). Thus, Theorem 2.1 is applicable for the time-reverse
system of (6.3).

Let 6, and 65 denote the pulse and e-pulse curves in parameter space. Then, by
Theorem 2.1 there are four possibilities for the location of the sector A that corresponds
to the periodic orbits. However, A is determined by the following results taken from
[1] and [10] together with the relative positions of 6, 65, 6, and 65 of Theorem 2.1:

(1) The front speed exceeds the pulse speed for the same vy;

(2) When both a front and back exist, a pulse exists only if the back speed exceeds
the front speed. The corresponding statements also hold for e-pulses (see Fig. 6.4).
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The important consequence of this result is that for y near vy, there exist infinitely
many periodic waves traveling at speeds always exceeded by the pulse speed. This
result is also contained in [1].
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LIPSCHITZ CONTINUOUS METRIC SELECTIONS IN Cy(T)*

WU LIt

Abstract. This paper gives an intrinsic characterization of those finite-dimensional subspaces G of
Co(T) whose metric projections P have Lipschitz continuous selections. It is also proved that P; has a
Lipschitz continuous selection if and only if Py is Lipschitz continuous.

Key words. Lipschitz continuity of metric projection, Lipschitz continuous selection of metric projection,
Hausdorff strong unicity, extremal signature
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1. Introduction. The problems concerning the existence of various continuous
metric selections have received much attention in recent years. The existence of
continuous metric selections is essential for finding stable algorithms to compute best
approximations (cf. [24], [30]-[32]). Also, the existence of Lipschitz continuous metric
selections and continuous metric selections will help us to determine the proximinality
of certain tensor product subspaces in multivariate approximation (cf. [18] and “Sitting
Duck Theorem” in[5],[19]). For finite-dimensional subspaces G of Cy( T), the behavior
of the metric projections P has been deeply investigated (cf. [8] and [23] for surveys).
Niirnberger, Sommer, and Li (cf. [15], [17], [23], [8]) found several intrinsic charac-
terizations of the existence of continuous selections for Pg. It was proved in [12] and
[14], by Fischer and Li independently, that the almost lower semicontinuity of Pg is
equivalent to the existence of a continuous selection for Pg. In [16], Li gives an intrinsic
characterization of the lower semicontinuity of Ps. In [20], Lin generalizes a result
by Deutsch [7] and establishes an intrinsic characterization of the existence of linear
selections for Pg. Thus, as far as the various continuities of P5 are concerned, there
is still one interesting question remaining: What are intrinsic characterizations of those
G whose metric projections Ps have Lipschitz continuous selections (or whose Pg are
Lipschitz continuous)?

In this paper, we will give the question above a complete answer. Before we go
into detail, we introduce some notation.

Let T be a locally compact Hausdorff space and let Cy(T) be the Banach space
of real-valued continuous functions f on T that vanish at infinity, i.e., for any £ >0,
the set {te T:|f(t)|= €} is compact. The norm of f€ Cy(T) is defined as follows:

IL£1l =sup {|f(0)]: te T}.
For G < Cy(T), the metric projection from Cy(T) to G is defined as
Ps(f)={geG:|f-gll=d(f G)},
where
d(f,G)=inf{|f-pl:pe G}

Recall [13] that P is called Hausdorff strongly unique at f€ Cy(T) if there is a
constant A (f)> 0 such that

If-gllzd(f G)+A(f) - d(g Ps(f)), g€G.

* Received by the editors October 14, 1987; accepted for publication (in revised form) October 24, 1988.
T Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.
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P is said to be uniform Hausdorff strongly unique if there is a constant A > 0 such that

If-gllzd(f, G)+A-d(g Ps(f)), feCy«T), geC.

Remember that Pg is called Lipschitz continuous if there is a constant A >0 such that

H(Ps(f), Pa(R) =X+ |f=hl,  f heCo(T),

where
H(Ps(f), Pc(h)) =max {sup {d(g, Pc(f)): g€ Ps(h)},
sup {d(p, Po(h)): pe Pc(f)}}.

We say that P has a Lipschitz continuous selection if there exists a Lipschitz continuous
mapping Q from Cy(T) to G such that Q(f) € Ps(f) for each fe Co(T).

Now we can state our main results.

THEOREM 1.1. Suppose that G is a finite-dimensional subspace of Co(T). Then the
following are mutually equivalent:

(i) Pg is uniform Hausdorff strongly unique;

(ii) Pg is Lipschitz continuous;

(iii) Pg has a Lipschitz continuous selection,

(iv) T\Z(g) is compact for every g € G, where Z(g)={te T: g(t)=0}.

COROLLARY 1.2. Suppose c,= Co(N) and G is a finite-dimensional subspace of c,.
Then the following are mutually equivalent:

(1) Pg is uniformly Hausdorff strongly unique,

(2) Pg is Lipschitz continuous,

(3) Pg has a Lipschitz continuous selection,

(4) There is n=1 such that g(i)=0,i=n, ge G.

Remark 1.3. Cline [6] knew that, for a compact T with finite points and a Haar
subspace G of C(T), Pg is Lipschitz continuous (cf. also [1]). Cline [6] also proved
that for a compact T with infinite points and a Haar subspace G of C(T), Pg is
Lipschitz continuous only if dim G =1. The converse was proved by Berdyshev [2]
(cf. also [28]). Respess and Cheney [28] extended Cline’s result and proved that Pg
has a Lipschitz continuous selection only if dim G =1, provided that G has Haar
property at a neighborhood of a cluster point of T. We can easily derive these results
by using Theorem 1.1. When T is compact, Berdyshev [2] also has some characteriz-
ations of P being Lipschitz continuous.

Remark 1.4. In general, there are one-dimensional subspaces of Cy(T) for which
the metric projections Ps; have no continuous selections [3]. But for any finite-
dimensional subspace G of ¢, Ps is lower semicontinuous (Isc) (cf. [4] or [16]).
However, Corollary 1.2 implies that, in general, the lower semicontinuity of P is not
equivalent to the Lipschitz continuity of Pgs. Also, Corollary 1.2 implies that there is
a one-dimensional subspace G of ¢, such that Ps is Isc but P; has no Lipschitz
continuous selection. It is interesting to note that metric projections in L,(T, u) have
quite different features. Contrary to the phenomena mentioned above, for any one-
dimensional subspace G of L,(T, u), Pg is Isc if and only if Pg is Lipschitz continuous
and Pg has a continuous selection if and only if Pg has a Lipschitz continuous selection
[9].

Remark 1.5. The idea of Hausdorff strong uniqueness is introduced in [13] to
characterize the lower semicontinuity of Ps; and is a natural generalization of the
strong uniqueness of best approximations in Cy( T') introduced by Newman and Shapiro
[21]. However, it is interesting to note that the uniform Hausdorff strong uniqueness
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may also be considered as a natural generalization of the 13-ball property introduced
by Yost [33], since G has the 13-ball property if and only if [11]

If-gl=d(f, G)+d(g, Ps(f)) foranyfeCy(T), geG.

Some results in [33] have been generalized by Park [25] to the case that Py is uniform
Hausdorff strongly unique. Also, Park [25], [26] gives an example of a one-dimensional
subspace G of C[a, b] such that P is uniform Hausdorff strongly unique but G does
not have the 13-ball property.

Remark 1.6. That (i) implies (ii) in Theorem 1.1 is the special case of Park’s
results [25] or [26]. By using the Steiner point, we can show that if P is Lipschitz
continuous, then Pg; has a Lipschitz continuous selection (cf. [10], [27]). Thus (ii)
implies (iii).

Since a subset A of N is compact if and only if A is a finite subset of N, Corollary
1.2 follows immediately from Theorem 1.1. By Remark 1.6, we need to show only that
(iii) implies (ii), which in turn implies (i). In § 2 we give some properties of extremal
signatures of G that will play an important role in this paper. In § 3 we show that (iii)
implies (iv). In § 4 we study the structure of G that satisfies (iv). In § 5 we prove that
(iv) implies (i).

2. Extremal signatures. A signature ¢ on T is a mapping from T to {—1,0, 1}
such that {t€ T: o(t) # 0} =: supp o is a nonempty finite set. Extremal signatures were
introduced by Rivlin and Shapiro [29] to characterize elements in Ps(f). For an
equivalent definition of extremal signatures see [17], [29].

DEerFINITION 2.1. An extremal signature o of G is a signature on T such that if
g € G satisfies o(t)g(t) =0, for t € supp o, then supp o< Z(g). A primitive extremal
signature o of G is an extremal signature of G such that

dim Gl,ppo = dim G|supp oy = card (supp o) —1 for tesupp o.

Now we list some properties of extremal signatures of G that will be used in this
paper.

Lemma 2.2 (Rivlin and Shapiro [29]). Suppose fe Co( T)\G and ge G. Then
g€ P;(f) if and only if there is a primitive extremal signature o of G such that

f()—g(t)=o(t)|f—g| for tesuppo.

LeEMMA 2.3. Suppose that o is an extremal signature of G. Then PG|SUW(0-| suppo) = {0}
and there is a constant A (o) >0 such that

max {o(t)g(t): tesupp o} = A (o) - max {|g(t)|: tesupp o} forgeG.

LEMMA 2.4. Suppose B< T. Then card (B)>dim G| if and only if there is an
extremal signature o with supp o < B, where card (B) denotes the cardinal number of
the set B.

LemMaA 2.5. If o, is an extremal signature of G and o, is an extremal signature of
G(supp 0,):={ge G: supp o,< Z(g)}, then

ay(t), tesupp oy,
o(t)=
oy(t), te T\supp oy,

is an extremal signature of G.

Lemmas 2.3-2.5 are results in § 2 of [17]. By Lemmas 2.4 and 2.5 we can establish
the following auxiliary lemma, which will be used in the proof that (iii) implies (iv)
in Theorem 1.1.
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LEMMA 2.6. Suppose B< T and card (B)>dim G|g. Then there is an extremal
signature o of G such that supp o< B and

dim G(supp o)|s = card (B\Z(G(supp 7))),

where G(supp o) ={ge G: supp o< Z(g)}.

Proof. We prove this lemma by induction on dim G. Assume that Lemma 2.6 is
true if dim G=s, where s=0. Now suppose dimG=s+1. If dim G|z=
card (B\Z(G)), then there is t,€ BN Z(G), since dim G| < card (B). Obviously,

_ 1, t= to,
"(’)‘{o, te T\{to}

is an extremal signature of G and
dim G(supp o)|p =dim G(t,)|s =dim G|
=card (B\Z(G)) =card (B\Z(G(supp o))),

since G(supp o) = G. Thus, without loss of generality, we may assume

(2.1) dim G| # card (B\Z(G)).
Since dim G| =dim G|\ z(c) = card (B\Z(G)), (2.1) implies
(2.2) dim G| p\ z(6)<card (B\Z(B)).

By Lemma 2.4, there is an extremal signature o, of G with supp o, < B\Z(G). Set
G* = G(supp ;). Then dim G*=dim G —1=s. Since dim G*|3 = dim G|z <card (B),
by the inductive hypothesis, there is an extremal signature o, of G* such that

supp o,< B, dim G*(supp 0,)|s = card (B\Z(G*(supp 0>))).

Define

0(t)={al(t)’ tesupp oy,

oy(1), te T\supp o0;.
By Lemma 2.5, o is an extremal signature of G. Since
supp o =supp o, Usupp o>,
we obtain that
(2.3) suppoc B,
dim G(supp o)|z =dim G*(supp 0>)|s
= card (B\Z(G*(supp 0,))) = card (B\Z(G(supp 0))).

Formulae (2.3) and (2.4) show that o is the required extremal signature of G.

(2.4)

3. Proof of (iii) implying (iv). Suppose that P; has a Lipschitz continuous selection
Q. If (iv) in Theorem 1.1 fails to be true, then there is g* e G such that supp (g*) =
T\Z(g*) is not compact. Set

T,={teT:0<|g*(t)|<1/k}, k=1.
If for some k, Ty is a finite set, then
(3.1) supp (g*)={te T: |g*(t)|z €},
where

3.2) e=min {|g*(¢)|: te T,}>0.
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Formulae (3.1) and (3.2) imply that supp (g*) is compact. This contradicts our assump-
tion that supp (g*) is not compact. Thus, for each k=1, T is an infinite set. Since
T2 Ty, k=1, we have

0=dim G|1_,=dim G|;,=dim G <+, k=1,
i.e., {dim G|, }%-, is a bounded decreasing sequence. So, there is r =0 such that

(3.3) lim dim G, =r.

Since dim G|y, are integers, (3.3) implies that there is N >0 such that
(3.4) dim G|y, =dim G|, =r, k=N.
It follows from (3.4) that
dim G(Ty) =dim G —dim G|,
=dim G —dim G|, =dim G(Ty), k= N,
where G(Ty) ={ge G: T, < Z(g)}. By (3.5) and G(T,) 2 G(Ty) for k= N, we obtain
(3.6) G(T) = G(Tn), k= N.

For each k= N, since T, is an infinite set, by Lemma 2.6 there is an extremal signature
o, of G such that

(3.5)

(3.7) supp oy < Tj,

(3.8) card (T,\Z(G,))=dim G, =dim G < +0o0,
where

3.9 G.={ge G:supp o= Z(g)}.

It follows from (3.7) and (3.9) that

(3.10) G, > G(Ty), k= N.

Set

(3.11) g =min {|g*(1)|: t€ T\Z(G\)}.

By (3.8), &> 0. By (3.11) and the definition of T,, we obtain
Tnn(Tk\Z(Gk))=®s n>1/8k’ n;k,

ie.,

(3.12) T,<Z(Gy), n>1/g, nz=k
Formula (3.12) implies

(3.13) G(T,)> G, n>1/e, n=k
It follows from (3.6), (3.10), and (3.13) that

(3.14) G, =G(Tn), k= N.

Since supp oy is a finite set and T, is open, there are open sets W, and V, such that

supp oy < Vi< Vi< W€ W c Ty, W, is compact,
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where A denotes the closure of set A. Now, by using Tietze’s extension theorem, we
can construct fi, h € Co(T) such that

Si(t)=ow(1),  tesupp oy,
Ifill =1,
fi(t)=0, te T\V,;
h(t)=g*(1),  teV
7l = max {|g*(0)]: te Vi}<1/k,
h(t)=0, te T\W,..
Let 0<a <min {3, 3||g*||}. Then
1=max {|fi(¢)|: t€supp ox}
=max {|fi (1) + ah () — ag*(t)|: t € supp o}
= | fi+ ahbe—ag*|
=max {max {|f;(¢)|: te Vi.}, max {a|h(t) — g*(1)|: te W, }}
=max {1, a(||h| +[g*)}
=max {1, a(1/k+|g*|D}=1, k=N,
i.e.,
(3.15) | fi + @by — ag*|| =1.
By (3.15) and the construction of f;, h;, we get
f(t)=o(t)=o ()| fil for tesupp oy,
fi(1)+ ah (1) — ag*(t) = ou(t) = 0% (t) || fi — by — ag*|| for tesupp oy.
If g€ Ps(fi), then
o (1) —g(O) = /() —g(DI =] fc| =1 for tesupp o

By Lemma 2.3, glsuppo, € Poiyyoi(Flsuppo,) and g(t) =0 for ¢ € supp oy, ie.,

(3.16) Ps(fi) < Gy, k= N.
Similarly, we can obtain
(3.17) Po(fi+ ahy) — ag* = Ps(fi + ah, — ag*) < Gy, k= N.

Thus, by (3.14), for the Lipschitz continuous selection Q of Pg, we have
Q(fi)eG(Ty), k=N,
QUfitah)—ag*e G(Ty), kz=N.
So, for k= N,
a-max {|g*(?)|: te Ty} =max {|Q(f, t) — Q(fi + ahy, t)|: te T}

(3.18) =[Q(f) - QUi+ ah)|=A - | fi—fi — ahy|
=Aca:|h|<Ar-alk,



LIPSCHITZ CONTINUOUS METRIC SELECTIONS IN C(T) 211

where A >0 is the constant in the definition of Lipschitz continuity of Q. It follows
from (3.18) that

O<max{|g*(t)|]: te Tn}<A/Kk, k=N,
which is impossible. The contradiction shows that (iii) implies (iv) in Theorem 1.1.

4. An equivalent form of (iv). We first assume that G satisfies (iv) in Theorem 1.1.
Set

supp (G)={te T: g(t) #0 for some g e G}.
We define a relation on supp (G) as follows:
X~y iff dim Gl(x,y} = 1,

where x, y € supp (G). Then it is easy to check that ““~” is an equivalence relation on
supp (G). Let

% ={[x]: xesupp (G)},

where [x] denotes the equivalence class of x.
LEMMA 4.1. supp (G) is compact and open.
Proof. Suppose G =span {g;};. Then

supp (G) = U supp (g),

where supp (g;) ={te T: g:(¢) # 0}. By the continuity of g;, supp (g;) is open; by (iv)
and supp (g;) = T\Z(g;), supp (g:) is compact. Thus, supp (G) is open and compact.
LEMMA 4.2. [x] is open and compact for each x € supp (G).
Proof. Let {g;}; < G such that

span {g;}] = {g € G: g(x) =0}=: G(x).

Since y € Z(G(x))Nsupp (G) if and only if y e supp (G) and dim Gy,,; =1, where
Z(G(x))= T\supp (G(x)), we obtain

(4.1) [x]=supp (G) N Z(G(x)).

Since Z(G(x))={te T: g(t)=0 for all ge G(x)} is closed, [x] is a closed subset of
the compact set supp (G). So, [x] is compact. On the other hand, by (iv), Z(g:) =
T\supp (g;) is openforeach1=i=s,s0 Z(G(x)) = Z(span {g;}]) =N;i-, Z(g;) is open.
By Lemma 4.1 and (4.1), we have that [x] is open. Thus, [x] is open and compact.
LEMMA 4.3. Z is a finite set.
Proof. Assume the contrary, i.., & is an infinite set. Then there are {x}7 <
supp (G) such that

(4.2) [x]#[x], i#j, Lj=1

By Lemma 4.1, supp (G) is compact. Let x* € supp (G) be a cluster point of {x,}7.
Since, by Lemma 4.2, [x*] is open, we obtain that [x*]N {x,}T is an infinite set. Let
i #j, x;, X;€ [x*]. Then

[x]1=[x*1=[x],
which contradicts (4.2). So, & is finite.
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THEOREM 4.4. Suppose that G is a finite-dimensional subspace of Co(T). Then the
following are equivalent:

(a) T\Z(g) is compact for every g€ G,

(b) There are open and compact subsets {A;}; such that

(4.3) ~n1 A; =supp (G),
and for 1=, j=n,
(4.4) dim Glaua,=1 onlyifi=j.
Proof. Part (a) implies (b). By Lemma 4.3, there are {x;}] < supp (G) such that
4.5) [x]1#[x], i#j, 1=i j=n,
(46) Utxl= U [xl=supp (G)
But dim Gl(,,jurx;) =1 implies [x;]=[x;]. So, by (4.5), we get
4.7) dim Gl[x,]U[x,] =1 iffi=j
From (4.1) we obtain
(4.8) G(x)={ge G: g|l;=0}=: G([x]),  xesupp(G).

Hence, by (4.8) we get

49) 1=dim G|;,; =dim G —dim G(x) =dim G —dim G([x]) =dim G| ;,

x € supp (G).
It follows that
(410) dim Gl[x‘]=1, 1si=n

Now, (4.6), (4.7), (4.10), and Lemma 4.2 ensure that (b) holds for A, =[x;], 1=i=n.

Part (b) implies (a). By (4.4), we know that for any g€ G, Z(g) N A, # & implies
A;< Z(g). Thus, for any g € G, there is a subset J of {i}} such that T\Z(g) =U ., A;
is compact.

5. Proof of (iv) implying (i). To prove that (iv) implies (i), we need several lemmas.
LeEMMA 5.1. For any B < T, there is a constant A(B)> 0 such that

d(g, G(B))=A(B)glls, g€G,

where ||g| s =sup {|g(?)|: te B}.

Proof. Let{g:}; < G be such that G|g =span {g;|s} and {g;|s}] is linearly indepen-
dent. Let

G*=span {g;}].

Then it is not difficult to check that || || 5 and d (-, G(B)) are two norms on G*. Since

any two norms on a finite-dimensional space are equivalent, there is a constant A (B) >0
such that

(5.1) d(g*, G(B))=A(B)|g*|ls, g*eG*
Now let g € G. Since G*|5 = G|, there is g*e G* such that
(5.2) gls=g%s,
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ie.,
(5.3) g—g*e G(B).
By (5.1)-(5.3) we get
d(g, G(B))=d(g*,G(B))=A(B)|g*|a=A(B) - |gls, g€G.

LeEMMA 5.2. Suppose f€ Cy(T), T=B,UB,, B,= Z(G), and G* = G|p,. If there
is a positive constant «; such that

(5.4) If—glzd(fls,, G*)+a;-d(gls,, Po+(fls)), 8€G,
then for every g€ G,

(55) 17- 812 d(s, 6)+(%) - g, Po).

Proof. Suppose g G and

(5.6) If—gll=d(f, G)+p.

If w=0, ge Pg(f) and (5.5) is trivial. So we may assume u > 0. Let g* € G such that
g*|s,€ Po+(f|5,) and

(5.7) d(gls,, Po(f18,)) =118 — 8*|5,-

For 0<A =1, we claim

(58)  |f—g*+r(g*—8)ls,=d(fls,, G*)+A-(d(f, G)—d(fls,, G*)+p).
In fact, if (5.8) fails to be true, then there is ¢, € B, such that

(5.9) If(6) —g* () +A(g*(t) —g(t))|> d(fls,, G*)+A - p¥,
where
p*=d(f, G)—d(f|s,, G*)+un>0.
Since | f(1,) —g*(t\)|=d(fls,, G*)<d(f|s,, G*)+ A - n*, by (5.9), we obtain
(5.10) |f(n)—g*(n)+a(g*(h) —g(t )= ex(f(t) —g*(t)) +Alg* (1) —g(n)l,
where g, =sign (g*(t,) —g(%,)). Thus, by (5.9) and (5.10), we have
If —gll= ex(f(82) — (1))
=& (f(H)—g* () +g*(h) —g(n)l

>a(f(n)—g*(tu)ﬁd(flsz,G*>+m*—sA<f<tA>—g*(tA))
=(1—%)8A-(f(a)—g*(a))ﬁd(flaz,G*>+u*

>(1 _1. * _l.d * *

= (1) 1= g+ 40T, G

1 1
=(1 —X) d(fls, G*)+X d(fls,, G*)+u*

=d(f,G)+p,

which contradicts (5.6). The contradiction shows that our claim (5.8) is true.
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Set A*=1—pu/u*. Then, by (5.8), we get

f—g*+Ar*(g*—g)l=d(fls,, G*)+A* - u*
=d(f|s,, G¥)+u*-un=4d(f, G),

i.e.,
g*+A*(g—g*) e Ps(f).
So,
(5.11) d(g Ps(f))=s|g—g*—2*(g—g*)=(1-21%)|g—g*|.

We discuss two cases.

Case (a). d(g|s,, Po+(f|5,)) Z2(n*— )/ ;.
By the hypothesis, we have

If-gl=zd(fls,, G*)+a,- d(gl|s,, Po(fl5,))

* *_ a0
(5.12) Zd(fls,, G*)+p* = p+=5- d(gls,, Por(f15)

—d(f c>+%~ d(gls,, Po+(f]s,))-

Since T=B,U B,, B,= Z(G), and G*= Gl,,, it is easy to verify that
(5.13) Po*(f|32)c Po(f)|82,

(5.14) d(gls,, Pc(f)ls,) = d(g, Pc(f)).
It follows from (5.12)-(5.14) that

1/~gllZd(f G)+=}- d(g, Po(f).
Case (b). d(g|s,, Po+(fls)) <2(u*—u)/a;.
By (5.7) and T\B,< B, < Z(G), we have
(5.15) d(gls,, Po+(f1s,)) =g —&*|ls,= g — ™|
It follows from (5.15), (5.11), and the hypothesis that
d(g Po(f)=(1-1%)g—g*|
= d(glaz, Po*(f|82)) cu/p*

S2-(u*—p) pw/(w* o)
=2u/a;.

(5.16)

By (5.6) and (5.16), we obtain

|/~glzd(f G)+} - d(g Po(f).

Thus, we have proved that (5.5) holds for any ge G.

LemMMA 5.3. Suppose fe Co(T), T = B,U B,, and G* = G(B,)|,. If there are posi-
tive constants a;, a, such that

(5.17) If-gllzd(f,G)+a:-d(gls, Ps(f)ls), g€G,
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I f-g—g*|=d(f—gls,, G*)ta,- d(g¥|s,, Po+(f—8ls,)),

(5.18)

gePs(f), g*eG*,
then
(5.19) |f-gllzd(f, G)+as-d(g, Ps(f)), gegq,

where az;=min {a,/4, a; a,/[2+A(B,) - (a,+2)]} and A(B,) is any constant that
satisfies

d(g, G(Bl))‘—<”/\(Bl) : "g"Bn gE G
Proof. Suppose ge G. Let g, € Ps(f) such that

(5.20) "8_31"3.:‘1(8'3‘,PG(f)lBl)-
By Lemma 5.1, there is a positive constant A(B,) such that
(5.21) d(p, G(B)=A(B)|plls,, preG.

By (5.20) and (5.21), there is g, € G(B;) such that

(5.22) "g_gn -gl=d(g-g, G(B))é)‘(Bl)"g‘8’1"15:l = )‘(Bl)d(glal, PG(f)IBl)-
Now we discuss two cases.

Case (a). d(g|s,, Pc(f)ls)=a,-d(g Ps(f))/[2+ A(By) - (a2 +2)].

By (5.18) and Lemma 5.2, we get

(5.23) If-g-gl=zd(f-g, G(Bl>)+% - d(g2, Posy(f— 1)
Since g, € Ps(f), we have

(5.24) d(f-g,G(B))=d(f, G),

(5.25) PG(B,)(f‘gl)CPc(f"gl):PG(f)“gl-

It follows from (5.23)-(5.25) that

If~gi~gl Z2d(f, G)+ (g2, Polf)~ 1)
(5.26)

=d(£,G)+2 d(gi+ g2, PolS)).

Since d(g, Po(f))zd(g,+ 82, Po(f))—llg — g1~ &ll, (5.22) and (5.26) imply
If-gl=lf-g—gl-llg—g—gl

% 22) g —g —
(5.27) =d(ﬁG)+“2‘d(8’Pc(f))—(1+2) lg—g1— gl

= d(f, )+ d(g, Po(1) ~A(B) - (1+%2) - (s, Po( ).
Now it follows from (5.27) and the hypothesis that
(5.28) I£-gllzd(£, G)+7} d(g Po(f)).

Case (b). d(gls,, Po(f)|)> ez d(g, Ps(f))/[2+A(By) + (2 +2)].
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By (5.17) and the hypothesis, we obtain
|f-gllzd(f, G)+a,-d(gls,, Ps(f)ls)
zd(f,G)+aja,-d(g Ps(f))/[2+A(By) - (a2 +2)].

Thus, for a; =min {a,/4, a; * a,/[2* A(B;) * (ay+2)]}, by (5.28) and (5.29), (5.19)
holds.

From now on, we will always assume that G satisfies (iv) in Theorem 1.1. By
Theorem 4.4, there are open and compact subsets {A;}] such that

(5.29)

(5.30) U A; =supp (G),
1

and for 1=, j=n,
(5.31) dim GIAiUAj =1 iff i=].
For convenience, denote

(5.32) A(D=U A, I<{1,2,---,n}

iel

To give a lower-bounded estimation of Hausdorff strongly unique constants, we
need some structural constants of G. By (5.31), there are g; € G such that

(5.33) Gla, =span{gia}, 1si=n

Since g;(t) # 0 for t€ A; and A; is compact, we obtain

(5.34) ;= ||gi|| a,/min {|g;(¢)|: te A;} <co, 1=i=n
Define

(5.35) 1=a=max{a;:1=i=n}<oo.

For any g€ G, if g|a, #0, then g|4, = Aigi|a, with A; #0. So,
(5.36) lglla,/min{|g(t)|: te A} =, = a, g€ G with | g4, #0.
Set

T ={I={i}{: dim G| a;y=dim G| s(1\(;; = card (I)—1 for je I}.

For I € J, it is easy to check that |- | acy and |- || acnijyy» J € I, are norms on Gl ().
Since any two norms on G| 4(; are equivalent, there is a constant (I)> 0 such that

(5.37) lglanimz=BU) - lgllaa, g€G, jeled.

Define

(5.38) 1zB=min{B(I): 1€ T}>0,

since 7 is a finite set. By Lemma 5.1, for & # I = {i}{, there are constants y(I) such that
(5.39) d(g, G(AMD) =y(D)lgllan, g€G, I<={i}].

Define

(5.40) 1=y=max {y(I): I < {i}{} <.

The constants «, B, v are essential in estimating the lower bound of Hausdorff strongly
unique constants of Pg.
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LemMA 5.4. For any primitive extremal signature o of G and any real number A =0,
we have

(541) "Ao-_g"suppa'g”Aa'"suppo--i_(ﬂ/a)”g”suppo'a geG
Proof. Since B/a =1, (5.41) is trivial if A =0. So, we may assume
A>0.

Set G* = Glsuppos 0* = |suppos SUpp 0 ={t;}¢ . By Definition 2.1 and Lemma 2.3, we
obtain that

(5.42) Pg+(Aa*) = APg«(a™*) ={0},

(5.43) dim G*=dim Gl(,yy =dim G|(yp\y=m,  0=j=m,
It is trivial that

(5.44) [Aa*(t)| = Ac*, tesupp o={t}¢o .

So, it follows from (5.42)-(5.44) and Theorem 1.3 of [22] that
(5.45) Ire*—g*zllAc*|+n-llg*l,  g*eG*,
where

(5.46) n=min{1/| p¥||: 0= i=m}

and p¥ are the unique functions in G* such that

(5.47) pi(y) =sign (Aa*())=0*(t;), 0=i, j=m, j#i
Choose p; € G such that

(5.48) Pilsuppo = P¥ 0=i=m.

Let {k;:0=i=m}c{1, -, n} such that

(5.49) LeA, O=ism.

By (5.31), (5.43), and (5.49), we obtain

(5.50) dim G|U:’;0Aki =dim G|U:';0Ak,.\Akj =m, 0=j=m.

By (5.47), (5.48), and (5.36), we can derive that
(5.51) Ipdla,Sa-p(tl=a-pf)l=a, 0=i j=m, i#]
Now we discuss two cases.
Case (a). m=1.
By (5.50) and (5.31), Ay, = Ay, . So, it follows from (5.51) that
1p81=1pl = lpla,Se  i=0,1,
So,
(5.52) nZmin {1/ p¥||: i=0,1}=1/a.

Case (b). m>1.
By (5.50) and m > 1, we obtain that for I ={k;: 0=i=m},

dim G|A(,)=dim GlA(l\{j})=Card (I)—l=m, jEI;
i.e.,, I € J. It follows from (5.51) that

(553) ||pi||A(,\{k,_})§a, 0=i=m.
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By (5.53), (5.37), and (5.38), we get
IPllacy =l Pill acniky/B=a/B,  0=i=m.
Thus,
nzmin {1/ p¥|: 0=i=m}=min {1/] pil|cuppo: 0= i = m}
Zmin {1/||pil|a): 0Si=m}=B/a.
Since B =1, (5.52) and (5.54) imply
(5.55) n=zp/a
So, by (5.45) and (5.55), we obtain that for any g€ G,
Ao = gllsuppo = 120 = gl supp o |
Z [Aa*[+ 7+ |l glsuppoll Z [Aa* |+ (B/ @) | gl suppo I
=[|A0 [lsuppo+ (B/ @) * &l suppo-
This shows that (5.41) holds.

5.1. Proof that (iv) implies (i) in Theorem 1.1. We prove that (iv) implies (i) by
induction on dim G. The conclusion is trivial if dim G = 0. Assume that for any subspace
M with dim M =5, if M satisfies (iv), then P,, is uniform Hausdorff strongly unique.
Now suppose that G satisfies (iv) and dim G=s+1.

Let T*=supp (G), G*= G| r~. Set

G, = G*(A(I))| = am> D#I<{i}].

Since G, G* and T* is compact, we obtain that G, satisfies (iv) and dim G, =
dim G*-1=dim G-1=s. By the inductive hypothesis, Pg, is uniform Hausdorff
strongly unique, i.e., there is a positive constant n(I)> 0 such that

lh=plzd(h, G)+n(I)-d(p, P;,(h)), heC(T*\A(I)), peG.
Since {i}{ has only finitely many different subsets, we have
n=min{n(I): I#I<{i}{}>0.
Obviously, for any nonempty set I < {i}],
(5.56)  |[h—pllzd(h, G)+n-d(p,Ps(h)), peG;, heC(T"\A(I)).
Now we claim

(5.57) If—gllzd(f, G)+Ar-d(g, Ps(f)), g€G, feCyT),
where

(5.54)

A=min{n/8,B-n/[a’-y-4(n+2)]}

First assume f* = f|«€ C(T*)\G*. By Lemma 2.2, there are g* ¢ Pg«(f*) and a
primitive extremal signature o of G* such that

(558)  fH0-g*() =) ~g* | =o(0d(f* G*), tesuppo.
By Lemma 5.4, (5.58) implies that
[f*=pl=f*=Pllouppo

=|f*—g*=(p—8")lsuppo

=d(f*, G*)o—(p—&*) | suppo

z||d(f*, G*)ollsuppot (B/ @) P~ &*|lsuppos P € G*.

(5.59)
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Let J ={i: supp o N A; # &}. Then for any p € G*,
| Pllacy=max{||plla:iel}
(5.60) =max{a- | pllansuppo: i€ I}
= || pllsuppo-
It follows from (5.59) and (5.60) that
(5.61) If*=plzd(f*, G*+(B/a®) - |lp-8*llaw), peG*
Formula (5.61) implies that Po«(f*)| as) ={g* a)}- Thus, (5.61) is equivalent to
(5.62) |f*=plzd(f* G*)+(B/a?) - d(plau), Pa(f*)awy),  peG*
By (5.39) and (5.40),
(5.63) d(p, G*(AUMN =7 |plaw, peG*
It follows from (5.56) that
I —pll= d(hlrau), Gi))+n+d(plrau), Ps,(h)),
he C|(T*), pe G;.

(5.64)

By (5.62)-(5.64) and Lemma 5.3, we get

(5.65) If*—glzd(f*, G*)+Ar*d(g, Ps-(f*)), geG*,
where

A*=min{n/4,B - n/[a’ y-2(n+2)]}

If f*e G*, then (5.65) is trivial. So (5.65) holds for any fe Cy(T). It follows from
(5.65) and Lemma 5.2 that

I17-p1=d0s )+ (%) - dn Por),  peG

Thus, we have proved (5.57), since A =A*/2. So, Pg is uniform Hausdorff strongly
unique, i.e., (iv) implies (i) in Theorem 1.1.
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JUSTIFICATION OF MATCHING WITH THE TRANSITION EXPANSION OF
VAN DER POL’S EQUATION*

A. D. MACGILLIVRAYY

Abstract. The analysis of the relaxation oscillations of Van der Pol’s equation presents an especially
challenging test of the formal techniques of the method of matched asymptotic expansions for solving
singular perturbation problems. The formal analysis is described in Kevorkian and Cole’s monograph [J.
Kevorkian and J. D. Cole, “Perturbation Methods in Applied Mathematics”, Springer-Verlag, Berlin, New
York, 1981], which explains why the inner and outer expansions must necessarily be supplemented by a
third “transition” expansion in order to obtain a uniformly valid approximation beyond O(1) on a complete
half-period. Kevorkian and Cole carry out the construction and delicate matching of several terms in the
expansions. The present paper mathematically justifies their formal results to O(g'/?), and is the first such
proof for any transition expansion. Partly for this reason, but also because the idea underlying the proof
has been and will be applied to other singular perturbation problems, this paper is intended to be a
contribution to the study of asymptotic methods rather than merely to the theory of Van der Pol’s equation.

Key words. singular perturbation, rigorous matching, Van der Pol, matched asymptotic expansions

AMS(MOS) subject classifications. 34C15, 34E15

1. Introduction. This paper presents a mathematical justification of terms in the
transition asymptotic expansion of relaxation oscillations of Van der Pol’s equation,
written as

d? d
sd—t’zv+(l—-y2)g);)+y=0.
It also justifies matching these terms with the leading terms in the inner and outer
asymptotic expansions. The construction of these terms and their formal (i.e., non-
rigorous) matching is explained in complete detail in Kevorkian and Cole’s well-known
monograph [4].

Van der Pol’s equation is, of course, a canonical example that has long been used
in texts, exposition, and research. As an example illustrating the method of matched
asymptotic expansions in solving singular perturbation problems, it provides an
especially stringent test of that method because three principal asymptotic expansions
are required, and the formal matching among them is an extremely delicate matter. It
is not surprising that the mathematical justification also presents some challenges. Our
analysis is believed to be the only justification of validity and matching of a transition
asymptotic expansion for any nontrivial problem (and not merely the Van der Pol
problem).

The present work extends the work of MacGillivray [8], [9], which presents a
complete mathematical justification of the formal result by demonstrating that the
leading terms of the inner and outer expansions, as constructed by Kevorkian and
Cole [4], give O(1) approximations to the solution, as & tends to zero, on explicit
domains of uniform validity that overlap. The extension by the present analysis justifies
the assertion that the first two terms of the transition expansion and the leading terms
of the inner and outer expansions give O(&'?) approximations to the solution, as
e >0, on explicit domains of validity that overlap; see Fig. 1.

The question of how to organize this paper was difficult. I wanted to describe
certain aspects of what Littlewood called the “dramatic fine structure of solutions”

* Received by the editors July 20, 1987; accepted for publication (in revised form) February 8, 1989.
T Department of Mathematics, State University of New York, Buffalo, New York 14214-3093.
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[7, p. 13], but sometimes detailed computations can get out of hand. (Littlewood
describes his last paper on Van der Pol’s equation as “The Monster” [7, p. 16]).
However, the proofs include enough guideposts to enable the interested or skeptical
reader to fill in some or all of the desired details. I hope I have achieved a balance
between brevity and verbosity, but in any case, detailed proofs are available upon
request from the author (MacGillivray [10], [11]).

The organization of the paper is as follows: Propositions 1-11 are presented in
§ 3, and lead to Theorem A, which is the first of four main theorems. Theorem A
asserts that the first two terms of the transition expansion approximate the solution to
O(e'”) on an explicit domain of uniform validity. In § 4, the analysis begins with an
application of Kaplun’s Extension Theorem and, after five more propositions, con-
cludes with Theorem B, which asserts an explicit domain of validity for the inner
expansion to O(g'?). The three propositions in § 5 lead to Theorem C, which gives
an explicit domain of uniform validity of the outer expansion as an O(¢'/*) approxima-
tion. In § 6, Theorem D collects these results together, completing the mathematical
justification of the method of matched asymptotic expansions for this problem. It is
worth mentioning that an interesting feature in the proofs is the recurring pairwise
interaction between the expansions that is undoubtedly related in some way to the
formal matching procedures.

The analysis of this and the two previous papers enables us to examine some
formal techniques of asymptotic analysis from a different vantage point and thereby
possibly enhance the understanding not only of how certain techniques work, but also
why they work. This view has been highlighted by recent work on “fingering problems.”
Langer [6], for example, discusses one of these problems for which a straightforward
perturbation analysis led to seemingly reasonable results. These were accepted as
correct for many years, but Langer shows them to be incorrect. See also the review
paper by Saffman [14].

For the sake of completeness, we give a short list of works devoted specifically
to the analysis of Van der Pol’s equation: Cartwright [1], Dorodnicyn [2], Haag [3],
Pontryagin, Mishchenko, and coworkers; see [12], Stoker [15]. A recent paper by Storti
and Rand [16] applies much of the formal analysis (including the transition expansion)
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of Kevorkian and Cole to strongly coupled relaxation oscillators. Finally, we mention
the book by O’Malley [13] and the review paper by Lagerstrom and Casten [5] to
supplement Kevorkian and Cole’s book [4] as references on singular perturbation
problems and asymptotic expansions.

2. Notation and other preliminaries. In the next section we present the analysis
that leads to Theorem A, which proves that the first two terms of the transition expansion
constructed by Kevorkian and Cole [4] approximate the exact solution uniformly on
an explicit interval as € >0. We will use many results from Kevorkian and Cole’s
formal analysis as well as from MacGillivray [8], [9]. We assume the reader is familiar
with the method of matched asymptotic expansions as developed in [4].

Recall Van der Pol’s equation in the form

2

(1) e%+(l—y2)~%+y=0.
We impose the same initial conditions as in [4]:

(2) y(8)=0,

(3) y'(8)<0

where

(4) 6=5(6)=82/370—£'%ﬂ,

with f,=2.3381 - - - being the absolute value of the first zero of the Airy function. The
stretched inner variable t* and transition variable f are defined by the following
expressions [4]:

(5) et*=1-5,

© i eelonel

The relationships among ¢, t*, and f are shown schematically in Fig. 1.

We introduce the function R(f; £), and recall from [8], [9], the functions r(t*; &)
and h(t; €), all defined as corrections to terms in the asymptotic expansions constructed
formally in [4]. They are

(7) y(t; €)= go(t*) +r(t*; g),
(8) y(t; €) =uo(t) +h(t; €), t=0,
9) y(t;8)=1+*fi()+'>R(T; ¢), f<i,.

go(t*) is defined in [4, form. 2.6.23), corrected:

1 1 1
10) =In(1- )— —=1n +2 =t*,
| R R
and r(t*; ) satisfies (MacGillivray [8])
d’r d dr
(11) dt*2= (_df:) . (280+ r)r+(1 —g(2)_2rg0_r2):it_*_€y'

uo(t) is defined in [4, form. (2.6.10)]:
(12) log uo—(uj—1)/2=t, t=0,
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and h(t; €) satisfies (MacGillivray [9])

d’h wdh  (14+ugy)h  euo(1+uj)
S =(1-y) —+ .
(13) ° A= G- (ug—1)°

dr?

Kevorkian and Cole construct f;( ) using the Airy function. The reader is referred
to their book for details, including their sketch of the graph of f; [4, Fig. 2.6.4]. Our
Fig. 2 shows a careful plot of —f;(f). R(f; ¢) satisfies

d’R dR df
—=—-2(R+f})—=— —_—— 1/3
ar = 2RHN) 2R p—e

(14)
> dR > df
: {(f:+R)+(fn+R) 7Tt R) d?}'

It is proved in MacGillivray [9] that

(15) y(t)=uy+o(1) ase->0,
uniformly on any interval of the form

(16) [—T/2+ ui(e)+ 8, —u(e)+8]
where

(17) e u; k1, i=1,2

',/ “70—77(5)
// /—fo—ﬁ(e)
/)
v

I\

=N o0

N

Vd:j

Fi1G. 2.
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and where T = T(e), the period of oscillation, is calculated to be
(18) T=3-2log2+0(1) ase->0

in agreement with the well-known classical result.
MacGillivray [8] has proved that

(19) (1) =go(t*)+ O(e"?) ase-0
uniformly on the interval
(20) tre[-e7'/2,67°].

Stated otherwise, there exists a constant K such that for all sufficiently small &
and all t* satisfying (20),

(21) |y (%) - go(1*)| < Ke'">.
Because y(t; ) is an odd periodic function, we have the further result
(22) y(t)=—go(t*+ T/2e)+ O("?)

uniformly on the interval

-T ¢ V3 —T
*e | ————, —+7¥3|.
(23) tel:zs T 2. T ]

The interval t€ [—T/2+ 8§, ], is contained in the union of the three intervals (16),
(20), (23) if € is sufficiently small. Thus formulas (15), (19), and (22) together provide
a complete O(1) description of y(¢; ) over a complete half-period, and hence for all
t by odd periodic extension.

3. Analysis of the transition asymptotic expansion. The idea behind the following
analysis is to construct regions in the (y, t) plane that are “forbidden” to the solution.
Consequently, the proofs often proceed by setting up contradiction arguments. These
proofs have a strong geometric appeal, and so the reader may find Fig. 2 a useful
guide. Notice the short line segments that appear in the crosshatched regions. The
location of the tail of a line segment represents the point (7, R(#)) and the sign of the
slope of the line segment corresponds to the sign of R'(f). Beside each line segment
is the number of the proposition that proves the corresponding R(f) and R'({) is
forbidden if ¢ is sufficiently small.

PrOPOSITION 1. Choose a € (0, }]. Then A> 0 can be chosen to satisfy the following:

(i) A<3,
(i) Q+a)/(I—T)<fi(D)<(A—a)/(f—1y) forall Te[fy—A, T,],

(iii) —(1+a)/ (=T’ <fiUD)<-(1—a)/(T—=1,) forall Te[iy—A, ),

(iv) 1/A> K, where K is defined in (21).

Proof. Inequalities (ii), (iii) follow from [4, forms. (2.6.58); (2.6.59), corrected].

ProrosITION 2. Let A be as in Proposition 1. Then, for all sufficiently small ¢, the
following properties hold

(i) R(fo—A/2)>—fi(fo—A/2)~ K ' for some constant K ',
(ii) R(fo—A)<—fi(fo—A) (strict inequality),

(iii) R(f—¢"*)=0(s7"°),

(iv) R(fo—€"’|log e|) >0 as £ >0,

(v) R(D)+£(F)>—-19¢7"3/(20|log €|) for Te[iy—A, iy—e"?|log €|].

Proof. Using (5), (6), (19), and (20), we can readily show

|log

(24) )’(t; 5)”—"30((?‘ ?0)8_1/3“”“6_)"‘0(81/3)
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uniformly for fe[f,— A, ;). From [4, form. (2.6.24)],

1 log(—t*)
(25) go(t*)=1+;;"‘(g37)+'” as 1* > —co,
so that (24) can be rewritten as
1+o(1
(26) ¥t e)=1+ of )“0 + 0.
-~ o~ _ E
(f—To)e "h%
Thus,
. . e'3(1+0(1))
(27) 51/3(f1(t)+R(t))= 1/3 +O(€l/3)-
(f—t')l_e [log ¢
(i~

Recalling the definition of K in (21), we easily show that

4 . A . A
(28) —K<fl(t0_5)+R(t0—E><0,
(29) —%<f,(i’o—A)+R(i‘o—A)<0,

and (i) and (ii) follow immediately, with K'=4/A.
To prove (iii), simply substitute 7= f,— £'/® into (26) and use the following result
from [4]:

_ ;0( f_ t~0)

. 1
(30) fl(t)=(iv__ ;0) 3

+O((T—1,)%) asi-f,.

Part (iv) is proved in a similar fashion. The proof of (v) also depends on (21)
and (30) and is the result of a straightforward computation.

ProvrosiTION 3. For all sufficiently small €, the amplitude y(t) is positive on the
interval fe[iy— e %*/2, i) and, in addition, R(f,— & */*/2) is positive.

Proof. y(t) is positive between its zeros at t=86—T/2 and t= 6. Writing this
interval in terms of T using (6), a short computation shows the interval fe
[fo—e7%3/2, T,) lies within it, provided ¢ is sufficiently small. This verifies the first
part of the proposition.

To prove the second part, first note that the point = f,— & %/3/2 corresponds to
t=—3+o0(1), which is well within the domain of uniform validity of u,(t); see (15)
and (16). Thus it follows that

—-2/3 —2/3
(31) 1+e‘/3[ ,(?0—82 )+R<t~0—f—5/—)]=u0(—-%)+o(l).

From [4, form. (2.6.50)],
. 8—2/3 8—2/3 .
W) )

— o—1/3 ;) >0
€ (\/ET(I) as € .

(32)
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Thus

o ) e

It is a trivial matter to estimate uo(—3) numerically from (12):

34) uy(—3)=1.7333 - - -

Substituting (34) into (33) leads immediately to the verification of the second part of
the proposition.

PrROPOSITION 4. Let A be chosen as in Proposition 1, and K' as in Proposition 2.
Then for all sufficiently small ¢,

. . o |ls s . A
(35) R(t);""fl(t)"‘Kl fortel:to—g 2/3, tO_E].

Proof. 1t is easy to show, using part (i) of Proposition 2, and Proposition 3, that,
if € is sufficiently small, R(f) exceeds —f,(f)— K' when f=f,—A/2 and when =
fo—&7??/2. Making the tentative assumption that the conclusion of the proposition
is false implies the existence of 7,, #,, we have
7 Lz/3< Li<b<fi 4
0 2 1 2 0 2

such that

R(;l)_'-fl({l) = R(fz) +f1(fz) =-K
R(D+fi(f)<-K' forfe(f,, ).

This leads immediately to a 75 € (f,, f,), where y lies between zero and unity and where
y' is zero. Such a point lies on a phase plane trajectory that spirals toward the origin
as { > —o0, and is therefore not on the limit cycle. This contradiction completes the proof.

PROPOSITION 5. Let 1« 7(g)«< e %3/2, let A>0 be given, and let A be as in
Proposition 1. Then, for all sufficiently small &, there exists no f, € [ {,— 7, &, — A] for which
R(f)=-A, R(f)=—f,(f), and R'(})=0.

Proof. Assume tentatively that such a f;, exists, and note that for any fe
[#o—7, £—A/2] for which R(f)=—A, R({)=—f,({), and R'(f) =0, Proposition 4 and
(14) imply

(36) Z~If§2A<df‘) e3(fi+R)? ( R)+ (773

for all sufficiently small e.
From the text above equation (2.6.50) in [4], we find () = J( f)+---as f->—o0.
Since |f] is an increasing function, it follows directly that

df'l ~—1/2> .
T: ( (1+0(1)) for fe[fy—7, fy).
Thus
&°R_ ﬁ"‘“) i z(d_R)
(37) = 2)\( (1+0(1))—e"°(fi+R) 7))
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assuming the conditions above (36) hold. It is easy now to use a continuation argument
to verify that on the interval (f,, {,—A/2) we have

R'(f)<0, R(f)<-A, R(H)<—fi (D).

On the interval [f,— A, {,—A/2], R({) is bounded. Thus, if € is sufficiently small,
the two terms containing R'({) in (14) combine to give a negative contribution. The
remaining terms in the braces being bounded yields

d’R -
(38) d—t.zé—Z)\lf’,(to——A)Ho(l)
on the interval [f,—A, f,— A/2]. Two integrations yield
(39) R(D)<=2Alf1(fo—-D)| - (1+0(1)) - (T~ T, +4),
. - i—f,+A4)>
(40) R(D)<=A=201i(To= )]+ (1 +o(1) - EEE)
on (i’o—A, t~0—A/2].
Let
3047 .
(41) K= ("35—) [f1(To—A)|.
Then (39), (40) give
~ A K
Rl t,—= )<
(42) (0 2) (i-_é)_{’
0 2 0
~ A —K
\h-=)<
(43) R(to 2) [(?_é)—{]z
0 2 0
Now as long as
(44) R(N=+=,
=1
-~ —K
4 R'(t)=——7
(45) (1) (-1

remain valid to the right of = f,—A/2, both (f;+ R) and R’ will remain negative.
Then estimate (v) in Proposition 2, together with properties (ii), (iii) in Proposition
1, leads, after a straightforward computation, to the conclusion that as long as (44)
and (45) remain valid to the right of f,—A/2, I < {,,
d’R
<

2k
(46) Wz[(f— 70)3]{(2—2a+;<)-(1+o(1))}+o(1),

which is negative if ¢ is sufficiently small. Furthermore, the quantity within the braces
exceeds unity if € is sufficiently small, and an obvious continuation argument leads
to the conclusion that (44), (45) remain valid on [#,—A/2, f,— £'/*|log £|]. This contra-
dicts (iv) of Proposition 2, if ¢ is sufficiently small, completing the proof.

CoROLLARY. The conclusion of Proposition 5 remains true if n(e) is replaced by
n(e)+1.
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PROPOSITION 6. If ¢ is sufficiently small, R({) cannot have a minimum in the region
bounded by

—f(H)=R(1)=-A and fy—e =7

IA

t~0 - A.
Proof. If we assume tentatively the existence of such a minimum at #,, then at 7,
we show easily that

& AN o
Tz 2R (D) - (i R+ (it RIS

From what precedes equation (2.6.50) in [4], we find

(47)

-1
—+
2/ (=F)
as {- —o0. Then there exists a 7 such that for {= f,— 7,
(49) f,(t~)<(1+a)«/(—t~) and fi(f)>-(1+a)[2v(—-D)].

Two easy computations (one if f; < f,— 7, and the other if ;€ [#,— 7, {,—A]) yield
R"(f,) <0 if ¢ is sufficiently small, a contradiction.

ProrosiTION 7. Let 7, A, and A be as in Proposition 5. Then, for all sufficiently
small g, there exists no f,€[i,— %, Iy—A) for which

(50) —fi(f))=R(f}))<-A and R'(i)=0.

Proof. Assume tentatively such a f, exists. An obvious continuation argument
leads to the conclusion that as long as R(f)= —f,(f) to the right of f;, R'({) will be
negative and lie below —A. Clearly (see Fig. 2) this cannot persist indefinitely, and the
graph of R(f) must enter the region R=—f,({), R=—A, f,b—n={=f,—A with a
nonpositive slope. Proposition 5 then yields the desired contradiction.

CoROLLARY. The conclusion of Proposition 7 remains true if 7 is replaced by +1.

ProposITION 8. Let 1, A, and A be as in Proposition 5 Then, if € is sufficiently
small, there exists no f,e[fy— 7, f,— A] for which

(51) R’(t~2)>0 and R(;z)é_A.

Proof. Assume tentatively such a f, exists. It follows from the corollary to Proposi-
tion 5 and the proof of Proposition 6 that

(52) R'(fy—%)>0 and R(f,—n)=-A.

There are two cases, depending on whether R(#,—7)=—fi(f,—7) or not. If
R(%—n)=—fi({,— 1), then, as f decreases, R(f) cannot drop below —f,(f) on the
interval [f,—7 —1, f{o,— 7] and still be on the limit cycle (recall R(f,—e *3/2) is
positive) and so
(53) R(io_ﬁ_l)é_f:(fo_'ﬁ_l)~

The same conclusion holds if the other alternative, R(f,— %) <—f,(f,— %), is assumed.
To show this, note that R'(#,— 1) < —f1(f,— 1) if £ is sufficiently small, since otherwise
we would not be on the limit cycle. Then as long as

(54) R(f)=-fi(f) and R'())=-fi(7)
to the left of f,— 7, we show with the help of Proposition 4 that

(48) fDy=(=T)++-+ and fi()=

d’R df, v
(55) 7;7§2f1(7d{:)+0(8 %),
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and estimates (48) then give

(56) i —ﬁ)(1+0(1))}{——:1—:(1+0(1))}+0(8”3).
N 7)
Thus if ¢ is sufficiently small,
d’R_ 1
(57) =3
as long as (54) holds to the left of #,— 7. This implies
(58) R'(f—7—-1)>—f(f—7—1)

if ¢ is sufficiently small, which in turn implies (53) (for otherwise the trajectory is not
the limit cycle). At this stage it has been established that for ¢ sufficiently small,

(59a) ~fillo=n—1)=R(f—7n—1)<—A,
(59b) R'(f,— % —1)>0.

Now, to be on the limit cycle trajectory, R(7) = —f,(7) forall fe[f,— e %3/2, T,— % —1].
However, from the proof of Proposition 6, R'({) remains positive to the left of fo— 7 —1
at least until #,—z %3/2 is reached, forcing R(f,—& *3/2)<—A. This contradicts
Proposition 3.

So far it has been shown that if ¢ is sufficiently small, no part of the graph of
R({) can appear in the region R=—A, f,— 7 = = f,— A. The next three propositions
explore the region R= A.

PROPOSITION9. Let A, A be as in Proposition 5, and let = 7(¢) satisfy A< b< g 7'/3,
Then, for all sufficiently small ¢, there exists no i, €[ f,— 7, i,— A] for which

(60) R(f)=zA and R'(f)=0.

Proof. Assume tentatively that such a f, exists, and note that wherever R’ is
nonpositive, (14) gives

(61) @R 2(R+f1)(dR> 2R<df’) e'*(fi+R).

dt~2 df

The idea of the proof is to show R’ is negative for all ¥ < f,; this would contradict the
fact that y is periodic. We begin by showing d’R/dif” is positive on the interval
[#,—27, ;). Since the first term on the right of (61) has factor dR/df, we need only
show that the second factor dominates the third. Specifically, we can easily show that
at any { in the interval [f,—27, f,) at which R(f)= A,

(%)

for all sufficiently small e. Having shown this dominance, an obvious continuation
argument leads to the conclusion that for all sufficiently small ¢,

(62) le 1/3(f1+R)|<

dR . s an s
(63) 27 <0 and R(f)> A on[#-27, ).

If € sufficiently small,

(64) fi(D)+R(F)>0 and f'(f)=- on[fy—27, fy— ]

3
8V (f,—7)
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so that
d’R_(3)\\,. .._ s n aen s
(65) —t.i—t:—z-><_8_)(to—t) vz, telty—2v, 1,— 7],
and an integration gives
. e 3A 1 .
(66) R'(t0—21/)§—<'z‘><1—"\/—§) (29)2

Thus the first term in (61) dominates the third term when 7= f,—27. Again an easy
continuation argument can be applied to the left of #,— 27 to conclude R'({) is negative
forall 7 < f;, which implies the contradiction mentioned near the beginning of the proof.
PrOPOSITION 10. Let ¥ = ©(¢) again satisfy A< < £ /> with A, A as in Proposition
5. If there is a T, €[ i,— v, T,— A] for which R(#,)= A and R'(f,)> 0, then, provided ¢ is
sufficiently small, R(f)> A and R'(f)> 0 for all f € (1,, T,) < [To— ¥, 1,). In addition there
exists A' which depends on A and A but is independent of sufficiently small & such that

. A
(67) R’(to—g) =y

Proof. Assume such a f, exists. From Proposition 9 we conclude immediately that
R(fp—A)> A and R'(f,—A)>0. To prove these inequalities on [#,— A, #,) note that
from (ii) of Proposition 2, R'(f,—A) < —f,(f,—A). From this it follows that
(68) R()<—fi(f) and R(I)<-fi(T) on[i—A, ),
for otherwise the trajectory is not the limit cycle. The information above used in (14)
leads directly to
d’R
di?

dfy

(69) ai

>—2R( ) on[#,—A, f,),

from which the conclusion R(f)> A, R'(f)>0 on (f,, f,) follows immediately. To
complete the proof simply integrate (69) from f,—A to f,—A/2. The result is

2 s é ey _ é —
(70) R(to“2>>)‘|f1(to A)|<2)—)‘~

The next proposition proves that f; as described in Proposition 10 cannot exist.

PROPOSITION 11. Let v be as in Proposition 10, and let A and A be as in Proposition
5. Let ' be defined by (70). Then, for all sufficiently small ¢, there is no §,€ [, — 7, T,— A]
for which R(f,)= A and R'(f,)>0.

Proof. Assume tentatively that such a f; exists. From Proposition 10,

. A . A
(71) R<t0_§)>A and R,<t0_5)>k,

for all sufficiently small e. From (71) there exists ko, independent of &, such that

(72) K0R<70-%>>_f1(;0_%> __<1_A)_,
(iYoo)
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for all sufficiently small . Now multiply (69) by kq:

d*(koR) o | A .
(74) > 2(@0(’§, te[m—;ng
and add it to the equation satisfied by f; [4, p. 75]. The result is the inequality
d*(koR+ d . 1. AL
(75) %> 2( 0R+ﬁ)< fll) 1, tE[to_E, to).

Inequalities (72) and (73) imply that at fo—A/2, d*(koR +f,)/di? is positive and that
d(koR+f,)/dl is positive on some interval to the right of f,—A/2, so k,R+f; is
increasing. f'}, on the other hand, is negative and decreasing. A continuation argument
then yields

. . N Ui S
(76) koR(E)+f1(£)>0 forallte[to—g, to).

In particular,
ey, €+ 0(1))

Ko

(77) R(f—¢

where (30) has been used. But (77) contradicts (iii) of Proposition 2, so #; cannot exist
if € is sufficiently small.

The first main result can now be proved.

THEOREM A. Let A be any positive number and let v = v(¢) satisfy

(78) A< p(g)«< e V3.
Then

(79) y()=1+&"fi())+o(e"?)
uniformly for

(80) felty—7v, f,—Al

Proof. Let A be any positive number, and note that, with no loss of generality,
we can assume A satisfies the conditions in Proposition 1. Note also that 7« ¢ /3«

£7%3, and so 7 can replace 7. From Propositions 5, 7-9, and 11,
(81) IR(D)| <A forfe[f,—», f,—A]

for all sufficiently small &. That is,

(82) R(f)=0(1) forie[f,—7, i,—A]

and from (9) the result follows.

4. Inner expansion analysis. We begin with a summary of results proved in [8]
concerning the leading term of the inner asymptotic expansion. Recall r(t*) is defined
in (7).

ProrosITION 12.

(@)  Iy(te)<3ife<is,

(b) dr/dt*(0) <0,

(¢) r(t*)=0 for t*e[—e7"3/2,0],

(d)  y(t;8)=go(t*)+ O(c'?),
uniformly for t*e[—e~"3/2, +&£7%/3].

The next proposition extends the domain of uniform validity of the transition
expansion declared in Theorem A, and is an immediate consequence of Kaplun’s
Extension Theorem [4], [5].
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PROPOSITION 13. Let 7 =7(¢) be as in Theorem A. Then there exists A= A(e) such
that A-> 0+ as € >0 and such that
(83) y(t; e)=1+e"3f,(T)+0(e'?)

uniformly for e[ iy~ 7, fy—A). Furthermore, without loss of generality, we can assume

1/31
(84) %Ac;ge_l_)o ase-0.
ProrosITION 14.
dr
(85) F(O) =o(e'?).

Proof. Tentatively assume vy is a positive constant and that there are arbitrarily
small e-values for which

(86) F<—'yel/3;

throughout the proof assume & is chosen from this set. It is easily shown that for &
sufficiently small,

1/3

(87) r’(—1)<_’j ,
1/3
(88) r(=1)> 782 .

If ¢ is sufficiently small, —*>> —ye'/?/4, and for such & denote by t the first
t*-value to the left of —1, where dr/dt* has increased to —&*>. Kevorkian and Cole
establish asymptotic properties for go(¢*) which imply the existence of constants C,,
C,, C; such that if t*= -1,

(89) g(t*)=C,,
(90) go(t*) < 't*;,
(o1) 1 (go(1*)) <22

(=1%)
These and (a) of Proposition 12 used in (11) give
d2r 2C1 C2 2C3 dr
dt*2> t*2 ((_t*)> ' (d_t* —38’ t* € [tik’ _1],

and at 1§ it is necessary that the left side of (92) be nonpositive. Hence, after multiplying
the right side of (92) by (t¥)?, there results a quadratic in t¥, and ¢} must be at least
as negative as the negative root of the quadratic. Assuming vy is small enough to ensure

3yC,C,
c3

(92)

(93) <1

b

elementary computations yield

-3C, Czy) -1
4 | —= /3
(04) ! ( 8C, )°
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Relating t*-values and #-values with (5) and (6), it is readily seen that f,— A lies

to the right of ¢§ if ¢ is sufficiently small, and hence at the t*-value corresponding to

— A&, dr/dt* is more negative than —&** and r is at least as positive as ys'/>/2. Now

use the asymptotic behavior of go(¢*) as recorded by Kevorkian and Cole [4, form.
(2.6.24)]—see (25), and evaluate g, at the t* corresponding to fo—A:

1/3 1/3 1/3
o) s (45) o)
go( e A[l+ oR 1 X 1+ 0 oA

log|—s”31§(l+o(l))|}
ol e

(95)

With (84), this leads to

1/3
y(i=t-B)=1-"1+o(e")+r(f=1,~&)
(96)

1/3 1/3
€ ye

>1—-—+
A

+o(e'?).

On the other hand, from Proposition 13 and (30),

y(T=f—B)=1+e"2f(f,—B)+o(e"?)
(97)

e'”? 1/3
=]1———++0 .
£ +o(e")

Comparing (96) and (97) ylelds the needed contradiction and the proposmon is proved.
PROPOSITION 15. Let tf denote the t*-value corresponding to = f,— A. Then

(98) r(t*) =o(e'?)

uniformly for t*e[t%,0].

Proof. The proof is similar to that of Proposition 14. Thus, let y denote a positive
constant and assume tentatively the existence of t¥ € [t%, 0], where r(t¥)= ye'/>. Then
the Mean Value Theorem produces a t* e (%, 0), where r'(+*) is at least as negative
as (ye'/*)/(2t%), and hence (recall ¥ =—¢""2A(1+0(1))) for all sufficiently small &,

(99) r(t*) < —g¥?
and of course
(100) r'(t¥)> ye'?/2.

The remainder of the proof is essentially like that of Proposition 14.
COROLLARY. Let n*=o0(™"*). Then

(101) y=go(t*)+o(e"?)

uniformly for t*e[—n*, 0].

Proof. In the proof of Proposition 15, replace A by max {¢"/>n*, A}.

We now turn our attention to the behavior of r(¢*) to the right of ¢* =0. The goal
is to sharpen the estimate of Proposition 6 in [8].

PROPOSITION 16. Let 1< < £ %> Then both r(t*) and r'(t*) are o(¢"/?) uniformly
for t*€[0, n].
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Proof. As in [8], begin with the identities
(102) %—(1 —g%)r=-§tl*(0)+L {_(%gf) r’—ey—[2g,+ r]r(%)} dv,
dr - 2 - ¢ 2
r(t*)= ((—1;;(0)) {exp L (1-g7) dS} L {exp [—L (1-go) dS]} d¢
(103) +{expjt (1-g3) ds} J' {exp [~I§(1~g§) ds]}
AL [-(5)-osenr(3) |} a

At t* =0, both r and r' are o(&'/*), and this estimate certainly cannot be destroyed
on any finite interval due to the presence of products of r and r’ in the integrands.
Choose the finite interval to be [0, 4]. So,

(104) r(t*)=o(e'?),
(105) r(t*)=o(e"?),

uniformly on [0, 4].
To continue these estimates to the right of ¢* =4, multiply (11) by dr/dt*:

d <dr)2 (dr>2 <dr)
dr* \ dt* dr* dt*
l (280) - 2go+ r)r+(-2(y*—1) 3)((11::) 2ey \

If the expression in the square braces were absent from (106), then |dr/ dt*| would
decay exponentially fast and the o(z'/?) estimate for r(4), r'(4) would persist for all
t*> 4. The task is thus to control the term in the square braces, at least until t* reaches
m. To this end, let k denote any positive constant and choose & small enough to ensure
neither |r(4)| nor |r'(4)| exceeds ke'/3/2. Then, for as long as

(107) |r(t%)| =2ke/?,

(108) |r'(t*)| = ke'/?

hold to the right of t* =4, simple computations yield
d 2

(109) (EE%) < (ke*).

(To arrive at (109), use (a) and (d) of Proposition 12, together with the facts that g,
is within .001 of —2 and g{(¢*) has magnitude smaller than .001 for t*=4.) Thus the
weak inequalities (107), (108) imply the strict inequality (109), so it is now only
necessary to exclude the possibility that equality in (107) occurs at some t*-value in
[4, n]. Assume tentatively that r(t*) reaches 2ke'/® for the first time at t*=t¥, and
denote by t¥ the last t*-value previous to ¥ that r =0, or ¥ =4, whichever is greater.
(The case r(t¥)=—2ke'? is considered below.)

Observe that on any subinterval of [ ¥, t¥] where r'(¢*) happens to be as large as
5¢/3, it is easily shown that if ¢ is sufficiently small, the expression in the braces in
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(106) is negative, and from this it follows immediately that if dr/dt* ever exceeds 5¢/3
on [£¥, t] it must do so at tf. Now integrate the inequality, obtained from (106),

d (dr\? dt\?
11 —|—=) <-3|—
(110) dt*(dt*) 3 (dt*)
for as long as dr/dt*=5¢/3 on [t}, t]. The trivial computation yields

(%) = r(£F) + P (1F) %[1 —exp (@]
(111)

3ke'?
2

<

Obviously, once dr/dt* has dropped to 5¢/3, it can never again equal 5¢/3, and
so any further increase in r on the interval [¢F, t¥] is limited to 5¢/3 - (¢t —t¥), and
this cannot exceed S¢/3 - 1. Consequently,

3ke'? 5¢
- r(tH = 5 +“3—n
112

<2ke'?

if € is sufficiently small. This contradicts the definition of 3.

It is even easier to prove that r(t*)> —2ke'/? for t* €[4, n] since if r, r' are both
nonpositive, all the terms in the braces of (106) are nonpositive.

It has now been shown that for arbitrary positive k, (107), (108) are valid for all
t*€[4, n], provided e is sufficiently small. Combining this with the result on the
interval [0, 4] completes the proof.

From the corollary to Proposition 15 and from Proposition 16 we have the following
theorem.

THEOREM B. Let 0« n*« ¢™'? and 0« n<« £%3, Then
(113) y=2go(t*)+o(c"?)
uniformly for —n*=t*=.

5. Outer expansion analysis. In this section we prove that the leading term of the

outer asymptotic expansion, u(t), gives an O(&"?) approximation to y on an explicit
domain of uniform validity.

PROPOSITION 17. Let >« n,<¢'?. Then

(114) Y(S_"72)=“o(3_772)+0(81/3),
(115) h(t)=o0(&"?) uniformly on [_TT+ S, 3_’02]-

Proof. If ¢ is sufficiently small, § — 7, is in the domain of uniform validity of the
transition expansion; see Theorem A, (4), and (6). An elementary computation involv-
ing the asymptotic behavior of f; (see (32)) gives

(116) y(@—m)=1+ 81/3(3_2/3772“ ;0)1/2"‘ 0(81/3)-

On the other hand, the asymptotic behavior of u, described by Kevorkian and
Cole’s equation [4, eq. (2.6.15)] yields

(117) y(6—m)=1+ 81/3(«‘5—2/37}2_ ?0)1/2"‘ 0(81/3)"‘ h(—n,+8).
Combining (116) and (117) yields (114).
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To show h is bounded above by o(¢'/?) uniformly on [—T/2+ 8, —n,+ 8], note
y(—=T/2+8)=0 and uy(—T/2+8)>0, so h(T/2+8) is negative. It is now easy to
show that the assumptions that h(8 — n,) is nonnegative and that h exceeds h(8 — 7,)
anywhere on the interval lead to a contradiction. If h(8 —n,) is negative, a similar
argument shows h(t) is negative on [—T/2+ §, 6 — n,]. This completes the proof.

The next two propositions give a proof of a classical result. The method of proof
in Proposition 19 is used in Proposition 20.

ProprosITION 18.

(118) T=(3-2log2)+o0("?).

Proof. Only those small e-values for which —T/2> —3+1log 2 need be considered.
Let At, satisfy

At,  _
(119) llog | =—« 73,
€

From Theorem B and the antiperiodic behavior of the oscillations, and equation
(2.6.72) of [4], there follows

-T
y(—2—+6+At€) = —go(%) +o(e'?)

(120)
=2+0(e'?),
and thus
-T 1/3 -T
(121) h —2—‘+5+AtE =2+0(e'"’)—u, —2—+8+At£ .

Noting that u} is increasing on the interval between —3+log2 and —T/2+8+At¢,,

that u)(—3+1log 2) = —%, and that uy(—3+1log 2) =2, we can easily show with the Mean
Value Theorem that

-T 2 /—-T
(122) h (-2—4' é +At€) > 0(81/3)4"3'[(—2-4' é +At€> - (—%+10g 2)] .

Now use (115) to complete the proof.
ProrosITION 19.

(123) T=(3-2log2)+o(e"?).

Proof. Assume tentatively that there is a positive constant y and a set E(y) of
e-values which contains arbitrarily small values of ¢ for which

-T 3 ye'/3
124 —<—=+log2-
(124) 2 ST %
Let
-T
(125) t€=-‘é—+8+At€.

Then from (121),
(126) h(t.)=2+0("?)—uy(t.).

If € is sufficiently small,

3 7ye'/?
<-4 _
(127) t, 5 log 2 6
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and since uo(—3+1log2) =2, (127) and (126) imply the existence of a positive constant
k that is independent of ¢ for all sufficiently small e, such that

(128) h(t,)=—ke'’;

that is, h is negative and bounded away from zero by O(&"?). The method of proof
proceeds by showing that h continues to be negative and bounded away from zero to
the right of t,, even penetrating the region of uniform validity of the transition
expansion. But estimates from the latter prevent h from being negative and bounded
away from zero by O(&'/?), thus proving the proposition.

To prove that (128) implies that h continues to be negative and bounded away
from zero by O(&'?), it is necessary to use technical details that are straightforward
computations, and only a proof outline will be given. Begin with the differential
equation for h written in the form

M__<1>(y2_~l)d_h+<_l_)(l+uo}’)h

ar~ \e dt \2¢/ (uj—1)

(129)
+(_1_>(l+uoy)h{1+uo(1+u%,)2e}
2¢e) (uj—1) (ug—1)*h

and note first that Proposition 16, together with the exponential decay of gg, implies
h'(t,) is bounded above by o(e~*?). Thus, if h'(t,) > £'/>, we use the first term on the
right side of (129) (which is approximately —3h'/€) to show h’(t) drops to £'/> so fast
that h is still negative and bounded away from zero by O(£'?). Further, the t-value
whert/e3h’ reaches £'/° is, like t,, on the left of and bounded away from —3+log 2 by
0(&'?).

Now continue, and with the help of the second term on the right side of (129),
show that h’' drops to zero and becomes negative in a time interval of O(e). Thus, if
h’ was not negative at t,, it becomes so at a t-value that is, like ¢, itself, on the left of
and bounded away from —3+log2 by O(£"?). And clearly h is still negative and
bounded away from zero by O(&'/?). Obviously, h'(t) remains negative as long as the
term in the braces of (129) remains positive, so the last step is to follow the sign of
the term in the braces.

Note that uy(t) decreases to uy(0) =1, as t increases. This leads to the conclusion
that the term in the braces remains positive as long as

Se
— =1
(up—1) |h|

It turns out that the estimates above lead to the conclusion

1/3

(130)

4

at least until (130) fails. It has been shown [9, eq. 50] that t>—(u,—1)> when
—3+log2=1t<0. It follows that (130) remains valid at least until

—20&%?
==

if ¢ is sufficiently small, and so the tentative assumption implies (131) holds for

0 .2/3
(133) te [zZOTE]

(131) h(t)=

(132)
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However, consider the t-value corresponding to = f,— #, where 7 is defined in
Theorem A. That is, t = £*/*(f,— 7) — e|log £|/6. It is easily verified from (79) that

(134) y(i=t—9)=1+&"3(=iy+9)"*+0("?),

and from (6), (8), and the small-¢ behavior of u, that

. n 1 .~
(135) y(t=82/3(t0—v)—%>=1+£1/3(—-t0+ p)\/?

. . €|l
+o(el/3)+h<t0—v—@).

Thus
. . 1
h<82/3(t0 V)-%) _‘0(81/3),

contradicting (131), since t = £*/*(#,— #) — €|log €|/ 6 is obviously in the interval (133)
when ¢ is sufficiently small.
THeorREM C. Let n,(g), n,(e) satisfy

(136) elloge|=m,« &' and P« m«e'?,
Then
(137) y(t; €) =uo(t)+o0(e'?)
uniformly for

-T
(138) te -—2—+6+n1,6—1’2 .

Proof. From Proposition 16, 8+, is in the domain where r(t*)=o0(e"?) and
where go(t*) =2+ o(&'/?). Using the antiperiodic behavior of y gives

-T
(139) y<—2~+6+n1> =2+o0(e"?).
Using T=3-2log 2+ 0(¢'?) gives
-T -T
(140) y(7+6+n1) =2+0(81/3)+h<7+6+1}1),

and so

-T
h (7+ 6+ n,) =o0(e"?).

Next let k denote any positive constant and assume tentatively that h falls below
—ke'? on the interval (138). Because of (139) and (114) there must be a t-value
between —T/2+ 8+ n, and & — n,, where h is less than —ke'/* and where h’ vanishes.
The continuation argument of Proposition 19 is now applied and the same contradiction
reached; the theorem is proved.

6. Summary. There remains the pleasant and easy task of collecting together the
results of Theorems A-C, to confirm that together the explicit domains of validity of
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the terms of the inner, outer, and transition expansions studied above indeed overlap
in such a way as to cover the half period te[—T/2+ 6, 8]. All domains are expressed
in terms of the outer variable ¢, and are shown schematically in Fig. 1.

TueoreM D. Let A be as defined in Proposition 13, and let m, ., 0., b, and n* satisfy

(a) e|log e|« < e« €'/,

(b) P« n, < e?*v+ellog e|/9« '3,

(c) Je*llog e| « e¥*A+elog £|/9« en* « 7.

Then, uniformly and within an o(¢'/*) error, y is approximated by the following expressions:

T -T -T
(141) —go(t*+—-) forte[—+8,—+8+en],
2e 2 2
-T
(142) uo(t) forte['—2—+6+n1,6-—n2],
(143) 1+e'2f(f) forte [5—ﬂ%gl—82/3ﬁ, 5—‘9'1—093‘3—32/35],
(144) go(t*) forte[d—en®*, 8]

Proof. If n satisfies (a) and if n* satisfies (c), then (141) and (144) follow
immediately from Theorem B; of course, a translation, based on the antiperiodicity
of y, is needed for (141). If »,, 7, satisfy (a) and (b), then (142) follows from Theorem
C. Finally, if 7 satisfies (b) then (143) follows from Theorem A. Obviously the intervals
in (141) through (144) overlap and their union is [-T/2+ §, 8].
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UNIFORM ASYMPTOTIC EXPANSIONS OF A CLASS OF INTEGRALS IN
TERMS OF MODIFIED BESSEL FUNCTIONS, WITH APPLICATION TO
CONFLUENT HYPERGEOMETRIC FUNCTIONS*

N. M. TEMME*

Abstract. The integral

0
F(z,a)= I trlem ol (t) dt
)
is considered for large values of the real parameter z; @ and A are uniformity parameters in [0, 00). The
asymptotic expansion is given in terms of the modified Bessel function K, (2vaz). The asymptotic nature
of the expansion is discussed and error bounds are constructed for the remainders in the expansions. An
example is given for confluent hypergeometric or Whittaker functions. In this example the integrals are
transformed to standard forms and the mappings are investigated.

Key words. uniform asymptotic expansions of integrals, modified Bessel function, confluent hyper-
geometric function, Whittaker function, construction of error bounds, transformation to standard form

AMS(MOS) subject classifications. 41A60, 30E15, 33A20

1. Introduction. We consider integrals of the form

(1.1) F,(z, a)zj A e (g d,
0
which reduces to a modified Bessel function in the case that f is a constant. We have
(12) 2a/2)"*K,(Vaz) = J P e dy
0

The integral in (1.1) is considered with @, A =0 and large positive values of z. We aim
to derive asymptotic expansions for F,(z, @) that hold uniformly with respect to both
a and A in the interval [0, 00). To handle the transition of the case @ =0 to a >0, the
modified Bessel function (1.2) is needed. Observe that when a = 0 the essential singular-
ity in the integrand of (1.1) disappears and that (1.1) becomes a more familiar Laplace
integral, which can be expanded by using Watson’s lemma.

First we consider fixed values of A. To describe the asymptotic features we introduce
the positive number B defined by

(1.3) B=Va/z.

The saddle points of exp (—zt+a/t) are located at t =+8. When B is bounded away
from zero, we can use the familiar Laplace method, since at the point ¢ = 8 the integrand
has the form of a Gaussian function. When, however, a« - 0, that is, 8 - 0, the internal
saddle point coalesces with the point ¢t =0, where the argument of the exponential
function has a pole. In addition, there is an algebraic singularity (if A # 1), but the
influence of the essential singularity due to the pole is more significant. Observe that
in the limit & =0, as mentioned earlier, the pole disappears; also, both saddle points
coalesce with the pole. These asymptotic features are typical for certain integrals
defining Bessel functions. For this reason the modified Bessel function in (1.2) serves

* Received by the editors May 5, 1988; accepted for publication (in revised form) February 27, 1989.
+ Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands.
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as a basic approximant in the uniform asymptotic expansions in this paper. In § 4 we
show how an integral with the same phenomena can be transformed into the standard
form (1.1).

The integral in (1.1) is the simplest case with the asymptotic features described
above, especially when the parameters are in the indicated intervals. We apply the
results to a confluent hypergeometric function. By allowing different intervals of
integration, say a contour in the complex plane, we can also consider negative values
of a. Then the ordinary Bessel function J,(z) shows up. This case is more difficult,
but the applications are very interesting in the theory of special functions.

Consider as an analogue of (1.1) a loop integral in the form

1 (0%) o
(1.4) G, (z, a)=————Jb A Tt (1) dt.
27 ) oo
This notation means that the contour of integration starts from —o0, arg ¢t = —, describes
a circle counterclockwise around the origin, and returns to —oo, arg t = +4. The integral
(1.4) has the modified Bessel function I, (2v az) as approximant. When f=1 we have

(1.5) G\(z, a)=(z/a)"*I,(2Vaz).

When « is negative this function is an ordinary J-Bessel function. In [2] and [6]
integrals of the type (1.4) are treated and the method is used for obtaining a uniform
expansion of Laguerre polynomials. We plan to return to this problem in a future paper.

The starting point (1.1) is of interest since it has a real interval of integration.
Thus the transformation to the standard form (1.1) involves a real mapping. This makes
the first steps of the analysis rather simple, since we do not need to trace the transformed
contour in the complex plane. For studying the asymptotic nature of the expansion,
we use complex variables, however.

The plan of the paper is as follows. In § 2 we construct a series expansion based
on an integration by parts procedure, and we give estimates for the remainder in the
expansion. In § 3 we consider an expansion that is based on expanding f at the internal
saddle point. In § 4 we give an application to confluent hypergeometric functions. In
§ 5 the parameter A is considered as a second uniformity parameter in [0, ), and
again we apply the methods on a confluent hypergeometric function. Especially, we
pay attention to the mappings needed for a transformation to the standard form.

Terminology. We call a parameter fixed when it does not depend on the parameters
z, a, \. Rz=1x, Iz =y are the real and imaginary part of z=x+ iy.

2. An integration by parts procedure. The procedure of this section takes into
account both saddle points +8 of the exponential function (where 8 is given in (1.3)),
although —p lies outside the interval of integration. For this reason we assume that f
is also defined at negative values of its argument, and that f is sufficiently smooth for
the operations to be used here. Further conditions on f will be given later.

2.1. Construction of the formal series. The first step is the representation
(2.1) f(t)=ao+bo(t—B)+(1—B*/1)g(1),
where a,, b, follow from substitution of ¢t = 8. We have
1
a,=f(B), bo='2§[f(ﬁ)_f(_3)].

Inserting (2.1) into (1.1) we obtain
Fi(z, @) = ayA,(z, B) + byB,(z, B) + F(z, @),
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where A,, B, are combinations of the modified Bessel functions introduced in (1.2).
It is straightforward to verify that

(22)  Ai(zB)=2B"K\(2Bz), B,(z B)=2B"""[K\+(2B2) - K,\(2B2)].
An integration by parts gives

F(z, @)= ——J *g(t) d exp (—z(t+B*/1))

1 (e o)
zJo
= ro t* Yexp (—z(t+ B/ 1)) f,(t) dt

0

N |-

with
S =12 [Pg(0)] = Ag() + (1),

We see that zF{"(z, a) is of the same form as F, (z, a). The above procedure can now
be applied to zF{"(z, a), and we obtain for (1.1) the formal expansion

(2.3) F\(z,0)~A\(z,B) ¥ az " +B\(z,B) L bz™" asz->,
s=0 s=0

where we define inductively f,=f, gob=g and for s=1, 2, - - -
1-A d A ﬁz

()= gD =a,+b(t-B)+| 1= ) 8, (1),
(2.4) .

a,=f(B), b =2—B—[fs(l3)—fs(—/3)]-

Remark 2.1. As mentioned earlier, for this procedure we need function values of

f and derivatives at negative values, although the integral (1.1) is defined only for
t-values in [0, 00). When we consider analytic functions f, as we do later, we assume
that f is analytic in a domain Q in the complex plane that contains the real line. When,

however, f is supposed to belong to C*[0, ), we assume in the above procedure that
f has been smoothly continued on (-0, 0].

2.2. The remainder of the expansion. We introduce a remainder for the expansion
in (2.3) by writing

n—1 n—1

(25) F/\(Za a) = AA(Z’ B) Z asz_s + B,\(Z, ﬁ) Z bsz_s+ Z——"Rm
s=0 5=0

where n=0, 1, - -. When n =0 the sums are empty and R,= F,(z, @). The integration
by parts procedure yields for R, the representation

=) t+ 2
(2.6) R,,=j ! exp(—z( tB ))f,,(t) dt,

0

where f, is defined by (2.4).
When a bound for |f,(¢)| is available, say,

2.7 |5 (D|=M,, t=0, n=0,1,---
then a bound for R, reads

(28) |1{n|§ MnAA(Z’ B)
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Since f, depends on B, the quantity M, may also depend on B. It follows that for
bounded values of B, say B €[0, Bol, B, fixed and finite, the estimate (2.8) of the
remainder R, shows the asymptotic nature of the expansion (2.5), provided that (2.7)
is satisfied.

We must point out that, in general, it is rather difficult to find realistic numbers
M, in order to obtain sharp estimates in (2.8). Also, the estimate in (2.7) is rather
global, since it takes into account values of f, in the complete interval [0, c©).

A sharper and more realistic bound for R, may be obtained as follows. Let

2.9) wo(t) =exp {o(t+B*/t—2B)}, t>0, o=0.
Observe that w,(8)=1 and that when >0

lim w,(¢)= lim w,(t)=+oco0,

t->0 t->+00

We assume that we can assign quantities o, and M,, which may depend on 8 and
which satisfy

(2.10) 0,=0, M,=1+¢,, €, fixed and positive,
such that for all >0 we have

(2.11) | £ (D] = M| £.(B)|ws, (1)

Then instead of (2.8) we obtain

(2.12) IR = M,If,(BIAN(z B),  z>0,,
where

(2.13) A\(z,B)=A\(z—0,, B) e 2P,

When f,(B) =0 a slight modification is needed. The idea about this approach is that
in (2.11) function values outside a neighborhood of ¢t=8 may be estimated very
roughly, and that the integral, which results after inserting the right-hand side of (2.11)
into (2.6), can be written in terms of one of the approximants in front of the series in
(2.5).

A possible approach to computing M,, and o, of (2.11) is to start with trial values
of M, satisfying (2.10). Then we compute

on.=sup f,(t), B fixedin[0, ),

t=0
where
In|f,()/[M,.£.(B)]|
t+B%/t-28 °
Observe that the function defined in (2.13) satisfies
AA(Z, B)/A\(z,B)=1+0(1) asz->o00,

uniformly with respect to 8 € [0, c0). This follows from (2.2) and well-known asymptotic
relations for the Bessel function.

)= t#B, f.(B)#0.

3. Expansion at the internal saddle point. In the expansion (2.3) we have used
function values of f at the negative saddle point —B. These values appear in the
coefficients a,, b, of the expansion. The form of the expansion is very attractive, since
only two special functions arise, and also since the parameters 8 and z are nicely
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separated in both series. Although the expansion (2.3) has a canonical form, there
remains the drawback that the function f must be defined at (—o0, 0] in order to obtain
for B a uniformity domain [0, ). For example, it is not possible to obtain such a
uniformity domain when f(¢)=1/(¢+1). In this section we only expand the function
f at the internal saddle point, and we formulate further conditions on f in order to
obtain an optimal domain for B.

3.1. The functions Q,({) and Q~s({). We expand f in the form
_f®)

s!

3.0 f0=1 a@-p"  a,

Substituting (3.1) in (1.1), we obtain after interchanging the order of summation and
integration the formal result

(32) Fna)~2" T a@Q@z™ sz,
where

(3.3) CL({)==§A+SJ:DtA_l(t—I)‘e"“+”"dg
(3.4) {=Bz

The functions Q,(¢) can be expressed in terms of the modified Bessel functions defined
in (1.2). It is easily verified that

(3.5) Q) =20 ‘;0 (-1)3"(f) Ko (20).

On the other hand, integrating by parts in (3.3), we obtain the recursion relation
(3.6) Qu2=(s+A+1-2{)Qs41 +{(2s+A+ I)Qs+s§2Qs—1a §=0,1,2,---.

For proving the asymptotic properties of (3.2) it is useful to introduce the functions
(3.7) Q) =0"" I e =1 e .
0

By applying Laplace’s method it is found that for large positive values of ¢

+1
5 ) §=0,1,2, - -.

G8) G~ o e (S

Furthermore, we have when z is fixed

lim Q.(0) =T(A +5).

3.2. Error bounds and interpretation of the expansion. We introduce a remainder
in the expansion (3.2) by writing

(39 SO=T a®-pr+R(LA-H),  n=0,1,2- .
Then we obtain for (3.2)

(3.10) Fi(za)=2z"" [nil a,(B)Qs({)z° + Ea(z, a)z_"],
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where

A+n * A1 n t+ Bz
(3.11) E (z,a)=z " (t—B)"R,(t,B)exp| —z ; dt.
(V]
Let f be analytic in a connected domain () of the complex plane; ) may depend
on B, and we assume that the radius of convergence Ry of the expansion (3.1) satisfies
the condition

(3.12) Rsz=p(1+B)", B=0 (p, « fixed, p>0, k =3).

This condition says that the distance between the singularities of f and the point t =
should be of order ©(B8*), uniformly with respect to Be[0,). When k<3 the
singularities of f are too close to the saddle point. Furthermore, we assume that f has
the following growth condition in ): there is a real fixed number p such that

(3.13) §u5(1+ltl)'plf(t)l

is bounded for B €[0, c0).
The coefficients a,(B) of (3.1) can be written as
1

f(1)
3.14 s =— ————dl,
( ) a,(B) i Jc,(t_ﬂ)s+l
where C, is a circle with centre 8 and radius r(1+ 8)"; r may depend on 8, but should
be uniformly bounded away from zero and small enough to keep C, inside Q. Using
(3.14) we obtain the following form of Cauchy’s inequality

(3.15) las(B) =r*M,(B)(1+B)™™,
where
(3.16) M,(B)=sug|f(t)l-

In the next theorem we introduce an asymptotic sequence {¢,}, which is constructed
on the basis of the estimates in (3.7) and (3.15). For the concept of asymptotic scale
and (generalized) asymptotic expansion we refer to [4, p. 25].

THEOREM 3.1. Let { =Bz, k =3, and let

(A7) b=z B)=M(B)1+B) A+ )TV e, 5=0,1,2,- -,

Then {¢,} is an asymptotic scale as z - %, uniformly with respect to B € [0, ).
Proof.

(3.18) ¢—(;):—‘=(1+3)‘~\/Z+1z*‘§% ifz=1.

Now we write the expansion (3.2) in the notation
(3.19) 2 Fy(z, @)~ go a,(B)Qs(9)z™*;  {¢} asz-oo,
and we have the following theorem.

THEOREM 3.2. The expansion (3.19) is a uniform asymptotic expansion as z - 0,
uniformly with respect to B € [0, o).
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Proof. According to the definition of generalized (uniform) asymptotic expansions,
we have to prove

(3.20) z "E\(z,B)=0(¢,), n=0,1,2,--,

as z - 0o, uniformly with respect to B €[0, ). The interval of integration in (3.11) is
split up as follows

(3'21) [03 CX))=A_U[I_, t+]UA+3
where
(3.22) A_=[0,¢t], A, =[t,,), t.=B+tr(1+B)" o<r,<r, rfixed,

with r as in (3.14). When ¢_ happens to be negative, we replace it by 0. For te[¢_, ¢, ]
we can write

(3.23) R,,(t,ﬁ)=2—1—j TACH R

@i Jc, (r—1t)(7—B)"
with C, asin (3.14).If 7€ C,, we have |7 — t| = (r — r,)(1+ 8)". Thus we obtain as in (3.15)
M,(B)A+B)™™

r"Yr—r)

(3.24) IR,(1, B)| =

Hence z* times the integral over [z_, ¢,]in (3.11) gives a contribution which is bounded
by

AMBYAB ™ [ [ t+32>>
(3.25) (1) j ele=Al e"p( z( )

=M,(B)(1+B) "™z "Q,({)0(1) asz->c,
uniformly with respect to B €[0, ). Using (3.7), (3.8), and (3.17), we conclude that
(3.26) z7"E,(z,a)=1_+1,+0(¢p,) asz->0,

uniformly with respect to 8 € [0, ), where I, are the contributions to (3.11) from A...
For te A, we write

n—1
(1=B)"R.(1, B)=f(1) - ;0 a,(B)(t=B)’,
and the proof is finished when we have shown that
(3.27) z* j 1 e RO o (1) di = O(¢,) as z—> 0,
A

uniformly with respect to 8 €[0, ©), where g(t) is |f(t)| or |a,(t —B)*|(0=s=n—1).
In fact, it is possible to prove that

(3.28) I.~0; {¢} asz->oo,

uniformly with respect to B €[0, ). That is, I. are asymptotically equal to zero with
respect to the scale {¢,}. The proof of (3.28) is similar to that given for another type
of integral in [5, Lemma 3.3] and will not be repeated here. 0

The above theorem gives only an order estimate in terms of ¢, for the remainder
defined in (3.11) and gives an interpretation of the asymptotic nature of the expansions
(3.2) and (3.19). To obtain a numerical upper bound for E,(z, A) we proceed as in
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the previous section. Since f(t) satisfies the growth condition (3.13), it is possible to
find numbers M,,, o, satisfying (2.10), such that

(3.29) [R.(t, B)| = M,|a,(B)|w., (1), 0<t<oo.
Using this in (3.11), we obtain the bound
(3.30) |E.(2, M) = M,|a,(B)| e 7 Q, (¢~ Boy), 2> 0,

When a,(B) happens to vanish as a function of 8 € [0, o), this approach needs a slight
modification.

4. Application to confluent hypergeometric functions. We start with the confluent
hypergeometric function defined by

oo

4.1) I'(a)U(a, b,x)=J u ' 1+u)b e du,

0
We consider a as the large parameter and x as a uniformity parameter in [0, %); b is
a fixed real parameter. We take b =1; the relation

U(a,b,x)=x"""U(a+1-b,2—b, x)
can be used when b>1.

4.1. Transformation to the standard form. First we give a simple intermediate
transformation. The function [u/(u+1)]° assumes its maximal value (on [0, c0)) at
u =00, This function controls the asymptotic behaviour of the integrand and, hence,
we transform it to an exponential function by writing u/(u+1) =exp (—w). Then (4.1)
becomes

(4.2) Fa)U(a,1—A,x)= J‘°° w* Texp (——aw—— ewx_ 1)f"(w) dw,
where
(43) Fowy= [l_e_ ] B

w

We transform (4.2) into (1.1) with the help of the transformation

w

v Bz
(4.4) w+t =t+—+A,
e 1 t

where v=x/a and B, A are to be determined. We compute them on the following
condition on the mapping: the critical points of the w-function in (4.4) must correspond
with the critical points of the t-function. Critical points are +w,, +t,, where

+ W, ——
(4.5)  t=8, wo=cosh™" (1+v/2)=ln(1+y—2—°), Wo=+ 12 +4v.

It follows that

(46) A==l potetsiii L, (i, 2B, )

From the simple differential equation

L v
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and a Taylor expansion of the right-hand side, it follows that B8 of (4.4) is an analytic
function of v, at least in the disc |¥|<4. Conversely, v is an analytic function of 8°
in some neighborhood of the origin. These domains can be extended to domains
containing [0, o).

With these values of A, B the mapping w— ¢ is regular at w=+w, and at w=0.
In fact it is regular in R and as a conformal mapping in a large domain  of the
complex plane. We have the correspondences

(4.7) (o) =+,  i(xw)=xB,  1(0)=0.

More details on the mapping are given in the next subsection.
Using transformation (4.4) in (4.2), we arrive at the standard form

©

(4.8) F(z,a)=T(a) e **U(a, b, x)= j tr e (t) dt,

0
with z=a, a =zB% A =1—b, B defined in (4.6) with »=x/a, and
1—e™™\* 'dw dw [e” -1\’ t*—g°
a. f)= = = :
(4.9) 10 ( t ) dt’ dt ( t )(ew-l)z—-vew

The function #(w) defined in (4.4) is an odd function of w. This easily follows from
rewriting (4.4) in the form

2
(4.10) L rwe w” _ B
2 e —1 t
After these preparations the expansion of (3.2) can be constructed. The expansion
holds uniformly with respect to 8 € [0, ); that is, uniformly with respect to x € [0, ).
The asymptotic nature of the expansion follows from combining (3.20) and (3.17).
For this particular case we can derive an upper bound for M,(8) of (3.16). The t-values
on the circle are written as t= 8+ 7v/B+1, with |7|=r, r fixed. When B and v are
large, we derive from (4.6) 8 = v/4+In+/v+ 0(1). So, for large values of B8, we obtain
(using (4.10)) t+B%/t—v/2=w+v/(e” —1)=In v+ 77+ O0(1). That is, w~In ». Then
it follows from (4.9) that f(t) = 0(B'*™*), te C,. Consequently, we can find a fixed
number K, such that

(4.11) M.(B)=K(B+1)"*7,  Be[0,%).

To conclude this subsection, we give the first coefficient ao(8) of (3.2). A few
calculations based on (4.9) and I’Hépital’s rule yield

dw
av =2 tanh (w./2)/B.
dt|1oes 2 tanh (wy/2)/B

So we obtain

(4.12) ay(B) =V tanh w2/ B (1 _;_%)H.

4.2. Analytical properties of the mapping (4.4). We now consider the mapping
(4.4) in more detail. We restrict w to the strip
(4.13) H={w|RweR,Swe[-m, 7]},

and we prove the following.
THEOREM 4.1. Let ) be the image of H under the mapping w> t defined in (4.4).
Let v€[0,) and let A, B be defined by (4.6). Then t(w, B) is analytic in H.
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In the following proof we show that t(w, B) and w(t, B) are analytic in a fixed
neighborhood of (0, 0). Accordingly, we concentrate on small (complex) values of the
parameters. For remaining values the proof is much easier. For instance, when 8 is
bounded away from zero, the critical points ¢ = +8 and the pole at ¢ = 0 of the right-hand
side of (4.4) are well separated. The preparations for applying the Implicit Function
Theorem mentioned below are more straightforward then.

Proof. From (4.6) it follows that

wo=B[1+0(1)], v=B[1+0(1)] asB-0.

Recall that ¢(w) is an odd function of w (see (4.10)). We introduce a function y = y(w, B8)
by writing

(4.14) t=w[~'[i+(w2—w(2))y].

Wo
This matches the points w=0<>¢ =0 and also the critical points w=xw,&t=+£8; y
is an even function of w and should vanish with 8. Substituting (4.14) in (4.10), we obtain

2S00 B (1LY w-wi (1-2) - - wii=o,
w w —wp Wo Wo Wo
where ¢(w)=w/(expw—1)—1+w/2. We expand
d(w)—p(w,)

it B—wo
= b (w*—w3)* ! b, = .
e N

Since ¢(w) is analytic if |w| <2, the series converges if 8 and w are small. Finally,
we obtain the equation F(y, w, 8) =0, where F is given by

8 Y b(w=wp)* 4wy ¥ bs(wz—W§)s“+(l-%)y—wzyz.

Wo s=2 s=1 Wo
The series represents analytic functions of w, w,. When B is small, w, is an analytic
function of B (see (4.6)). Hence, F is analytic in a fixed neighborhood of (0, 0, 0),
F(0,0,0)=0, and F,(0,0,0)=—1. After these preparations we can use an Implicit
Function Theorem (see, for instance, [1, p. 36]) and solve for y(w, 8); it is analytic
in a fixed neighborhood of (0, 0). By using (4.14) it follows that the same holds for
t(w, B). 0

The first terms in the expansion

t(w, B)=c(B)w+cs(B)w'+- - -
easily follow from (4.10). We have
2
g2 ci+ % —c— V—:‘-
alB)=",  e(f)=————
THEOREM 4.2. The mapping (4.4) is univalent in H.
Proof. First we show that the mapping is univalent on

Fo={w=u+iv|lueR,v=m},

which is the upper part of the boundary 6 H of H. We write ¢t = re". The image of £,
in the t-plane is defined by the equations
2

(4.15) T =rsin 0(1—%), W(u)==>(0),
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where
Y(u)=v/2+u—v/(e"+1), @(0)=rc050(1+%).

The first equation in (4.15) defines a curve given by
a+J 7 +4B%sin

9) =
r(6) 2sin 0 ’

o<o<m.

It follows that r> #r/sin 6. Furthermore, we have
Y(—0)=P(7r)=—00,  W(+00)=2(0)=+co.

The function ¥(u) is one-to-one on R. The same is true for ®(0) on (0, 7), but the
proof requires a little extra work. We have, using the first equation in (4.15),

dr_ rcos 8(r’-B?
de sin 6(r*+B%)
It follows that

@9 et (2)]

which shows that ®(8) is one-to-one on (0, 7). We infer that for each value u R we
can find one and only one value 6 € (0, 7r), such that ¥(u)=®(0), and, hence, one
and only one value r(0). Since t(w) is an odd function of w (see (4.10)), the mapping
w>t is one-to-one on 3dH. When Rw - +c0 we have w~ t. Hence the mapping t(w)
is also one-to-one as w-> 00, we H. We now consider a large closed rectangle ABCD
of which upper side AB and lower side CD are finite parts of dH, and BC and AD
are far away to the right and to the left, respectively. From the above arguments it is
not difficult to conclude that the mapping is univalent on BC, AD, and on the whole
Jordan curve ABCDA, provided that the vertical sides are far away. Then we use a
well-known result of complex function theory, which says that consequently the
mapping is also univalent in the interior of rectangle ABCD, since it is analytic there.
See [3, Vol. II, p. 118]. We can take the finite rectangle as large as we please. Thus
the result also holds for H. 0

For the uniform expansion of (4.8) we take () as the image of the strip H under
the mapping w—t. From f(t) defined in (4.9) it follows that (3.13) is bounded in Q
if p=1—A and that M,(B) of (3.16) is well defined. There remains to show that the
radius of convergence R, of the series in (3.1) satisfies (3.12). It appears that we must
take x =3. In fact, we show that  contains a disc around B with radius pvVB+1 (p
fixed), for all B =0. The points of intersection of the circle with radius r around the
point ¢t = B with the curve defined by the first equation of (4.15) are governed by the
equations (we write t = o + ir)

2
(c—B)+7*=r 7T=T<1—0_2i+7—2>, > .

When we require that the circle is tangent at the curve we have the extra condition

a-B 20(r—m)?
T aB>+2r(r—m)*
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This equation is obtained by equating dr/do of both equations and eliminating 7°+ o™
by using the second one. For large values of B the solution of these three equations reads

r=m+avB[1+0(1)], o=B+bVB[1+0(1)], r=cVB[1+0(1)],

with a=b=vax/2, c=V=.

This shows that ) is large enough to apply Theorem 3.2. From a further analysis
it follows that the value k =3 is best possible in this case. Apart from the real critical
points +=w, given in (4.5), which are regular points for the mapping, we have other
ones located at £wy+27ni, n=1, 2, - - . For large values of B those are mapped at
a distance 0(v/B) from the critical point ¢t = 8.

Remark 4.1. The behaviour of f(t) of (4.9) in the left half-plane Rt <0 is quite
different from that in Rz> 0, except when A = 1. Consequently, the approach of § 2 is
less attractive. See also Remark 2.1.

Remark 4.2. When b =1, (4.1) is a parabolic cylinder function, and the functions
Q.(¢) defined in (3.3), (3.5) are elementary functions (A =3). Then (3.2) gives an
expansion of the parabolic cylinder function D,(z), as v—> —c0, which is uniformly
valid with respect to z € [0, ).

5. A second uniformity parameter. In this section we consider (1.1) with A as a
second uniformity parameter in [0, ). Thus we take further advantage of the fact that
the modified Bessel function is a function of two variables. In this case it is convenient
to put the reciprocal gamma function in front of the integral. So, now we write

___1_ ® A—1 _—zt—a/t
(5.1) F,(z, a) F(A),[O t"e 'f(¢) dt.
In [5] we considered (5.1) with a@ =0, again with z > co and A as a uniformity parameter
in [0, ). In [6] we applied the present method for a loop integral (without proofs)
to the case of Laguerre polynomials.

We write A = uz. The critical points of the integrand are now defined as the points
where the derivative of ¢+ 8%/t —u In t vanishes. This gives the real critical points

(5.2) t¢=”“—;—T, T=Vu2+4p>.

Observe that also in this case one of the real saddle points is outside the interval of
integration, and that the “‘phase function” that is used to compute the critical points
has a logarithmic singularity at ¢ = 0. The two critical points coincide with this singular-
ity when B and u both vanish. At the same moment, however, the logarithmic singularity
disappears.

First we construct an expansion by using the integration by parts procedure of
§ 2. The modification of (2.1) is

(53) S(t)=cotdo(t—1t.)+(t—p—B*/t)h(2).
Using this in (5.1) we obtain, after repeating the procedure,

n—1 n—1
(5'4) F)‘(Z, a)=C(Z’ B’ lu’) z csZ—S+D(Z’ Ba ’*“) z dSZ—S"‘Z_an,
s=0 s=0

The functions in front of the series are again combinations of Bessel functions as in
(2.2). We have

A A

2
K.(2B2), DB, u>=rg)

2
C(z,B,n)= B

T(A) (K, +1(2B2) — t, K, (2B2)].
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The coefficients c,, d, follow from the recursion relation
d 2
FO=10,  f(O=17ho()=c+dy(t= t+)+(t—/-L—Et‘) (1),
Sf(e) —f(t)

'S = s t 9 dS=
¢, =fi(ts) to—t
The remainder R, in (5.4) can be written in the form
1 J’ © et —me
R,=—— | t* te ™ (1) dt.
r() Jo

A bound can be constructed by using constants o,,, M, satisfying (2.10), and using a
function

2 2
w,(t) =exp <O'<t+Et""‘,LL Int— t+—€—+y, In t+))

+

such that, as in (2.11), for all >0
L2 (DI= M, | £ (22)|ws, (2).

Then we obtain

IR =M,|£,(t)IC(z B p), z>0,,
where

2
é(z’ B, /"') = C(Z—U,,, B, /“') exp ("'O’,,(h."‘%"/.t In t+))'

.
When f,(t,) =0, a slight modification is needed. An optimal value of o, follows from
the method described in § 2.2.
The analogue of the expansion of § 3 is obtained by substituting
n—1 . . f(S)( t+)
(5.5) f(t)= ;0 (B, w)(t=1,)° + Ru(1, B, w)(t = 1,)", ="

s!
So we obtain

n—1
(5.6) Fi(z,a)=z"" [ )

0

CS(B’ M)PSZ—S + E"(Z’ a’ A)Z_"]’

where

[ee]

2
En(z,a,/\)=2“"J t*“(t—tﬂL)"R,.(t,B,.u)exp(—z(t“3 )) dt,
0

B z).+s [s o) Ae1 B . B t+B2))
PS_F(A)_Lt (t—t,) exp( z( ; dt

22)\+SB)\ s

e O [T A ey

r=0

A recursion relation for P; follows from the above integral representation.

- ZA‘FS o Aot . ( (t+32>>
PS—F()\)LI [t—t]° exp| —z ; dt

A+(s—1)/2 2 2 27N —-(s+1)/2
n B B +z+] (s+1)
r'() exP( 1’( ti))[ 264 2 asm =,

(5.7)
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where 1 = zt, . Since z is the large parameter, 7 is large if at least one of the uniformity
parameters B, u is bounded away from zero.
The coefficients ¢, and the remainder R, can be written as

N IC) 1 ()
cs(Ba ,LL) —277_1 IC, (T— t+)s dTa Rn(ta Ba M) - 27” JC, (T— t)(T_ t+)n T,

where C, is a circle around ¢, with radius r(1+t,)*, k=3, r>0. We accept that f
depends on both uniformity parameters 8, u, and we assume that the domain of
analyticity ) is large enough to contain such a circle for all 8, u =0.

As in § 3 we have the following theorems. The quantity M, (B, u) is defined as in
(3.16); we also assume that (3.13) is bounded for all 8, u €[0, ).

THEOREM 5.1. Let n=1zt,, k =3, and let for s=1,2,- - -

Mr : 1+ (s—1)/2 2 2+ti —(s+1)/2
69w e"p("’(”%))[ﬁzti ] '

Then {x,} is an asymptotic scale as z - o, uniformly with respect to B, u €[0, ).
THEOREM 5.2. The expansion

(5.9) Z*F(z, @)~ ¥ ¢(B,w)Pz™";  {x.} asz->oo,
s=0

is a uniform asymptotic expansion as z - o0, uniformly with respect to B, u € [0, ©).
A bound for the remainder E, of (5.6) can be constructed by combining the
methods used for (3.30) and the above estimate for the remainder of (5.4).

5.1. Application to a confluent hypergeometric function. Our starting point is (cf.

(4.2))

I'(a)
m U(a,1—A, x)
(5.10) .

————Iwex (—-z[-— In(1—-e™")+w+ Y ]) dw
roy ), &P ® e"—1])1-e

with z=a, u=A/z, v=x/z The real critical points of the ‘“phase function” are

+v+W N
(5.11) wi=1n(1+%), W =(u+v)>+av.

The transformation to the standard form (5.1) reads

2
wV =I+E——p,lnt+A;
e"—1 t

(5.12) —uln(e”—1)+(u+1)w+

A, B are determined by substituting w.. and t., where ¢, are the critical points defined
in (5.2). We have the correspondences

t(£00) = 00, t(wy)=t., 1(0)=0.

Observe that the introduction of a second parameter (here in the form of u) does not
require a third constant in the equation (5.12). It has the same number of constants
as (4.4). In fact, in order to obtain a regular mapping w ¢, the constants multiplying
the log-functions in the left- and right-hand side of (5.12) must be the same. We assume
that the log-functions take their principal branches.
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Elimination of A from the two equations (5.12) (with w=w,, t=1,) gives a
relation for the unknown parameter B8 in terms of u, v:

24ut+rv+ W
—pln
24u+tv—W W—pn-—v

By considering u €[0, 00) as a fixed parameter, we obtain a more transparent relation
for B(v) in the form of a differential equation:

d W
(5.14) —-—Bd(y") =f—ﬁ,

The value of A follows from (5.12) by substituting w=w,, t=1¢,. We have

W+ T+
P W=2T—pIn—%,
T—p

(513) (w+1DIn

B(0)=0.

utv+W put+tv—-W

= + — — .
A=(u+1)w,—puln T 2 T.
Using (5.13), we can eliminate W/2—T and we obtain
1 2
(5.15) =5|:(y,+1)ln(p,+1)+p,ln%—p,—v].

The transformation (5.12) is discussed in the next subsection. By using it in (5.10)
we obtain the standard form (5.1):

e*T'(a) 1 J“’O
F, = Ulg,1-A,x)==—| e ™ *'f(1) at
,\(Z, a) F(A) (a’ ax) F(/\) o € f( ) )
where z=a, a = zB%, B* follows from (5.13) with u =A/z, v = x/z Furthermore,
t dw e"(e"-1) t?—ut—B?
5.16 t)= —= .
( ) /0 1—e™™ dt t (e =1 —(u+v)(e"—1)—»

The first coefficient of (5.9) equals f(z,). A few computations give
co(B, p) = e"/*NT]W.

The function f satisfies f(t)~t as t>+00, whereas f is exponentially small at —oo.
This time we can also derive an expansion based on (5.4).

5.2. Analytical properties of the mapping (5.12). The mapping w+— ¢ defined in
(5.12) is one-to-one on the strip H given in (4.13). First we prove this property for
the boundary. The proof is similar to that for Theorem 4.2. The equations for the image
of the upper part of dH are given by (cf. (4.15))

2

T =rsin 0(1—%)—/.& V(u)=2>(0),
where
v B2
=—-A+(p+)u——— = +5) - :

W(u) A+(u+1)u D ®(0)=rcos 0(1 r2> winr
It follows that the image is given by
ub+ 7+ (ub+ )2 +4p%sin’ 9

2sin 6 ’

The function ¥(u) is one-to-one on R. When we compute d®(0)/d6, we find the same

expression as in (4.16). As in Theorem 4.2, we conclude that the mapping is univalent
on the boundary for all B8, u €[0, ).

r(0)= o<o<m.
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It remains to show that the mapping is analytic inside H. The interesting question
is: Is t(w) analytic at t=0, t=w,, uniformly with respect to the parameters v, u?
Especially interesting are small values of the parameters, since then the critical points
coalesce with the pole and log-singularity at w=0. When one of the parameters is
bounded away from the origin, the critical points w.. are well separated. In that case
the problem is simpler. Here we prove that #(w, », u) is analytic for complex values
of the three arguments in a fixed neighborhood of (0, 0, 0). The proof follows the idea
of §4.2.

First we have the following theorem.

THEOREM 5.1. B>= B*(v, u) defined by (5.13) is an analytic function of v, .

Proof. As remarked earlier, we concentrate on small values of the parameters. For
u =0 the relation between » and B is given in (4.6), and we have mentioned there
that B*(»,0) is analytic in the domain of interest. On the other hand, we have the
expansion

B> (v, p) ~ er(p)v+ex(w)v?+e(p)v’+- - asv->0.

The coefficients ¢, are analytic functions of u. The first few easily follow from (5.13):

1
cl(”’)=e(/~4+1)ln(ll«+l)/ﬂ«—l=1+5M__2_12M2+ 0(”’3) as u -0,

() = a(p)lp +22-261(,u)] _1, O0() asp 0.
“ 12

Next we observe that the quantity T of (5.2) is singular at 8°= —u?/4 and that W of
(5.11) has singular points at v =»,, v =v,, where

(5.17) vo=—(u+2)+2vu+1, vi=—(u+2)-2vu+1.

It is obvious that the singularities at —u>/4, v, must correspond. That is, a necessary
condition for B to be regular for small values of |u| is B°(¥, u) = —u’>/4. Note that
vo~ —u>/4 as u~ 0 and that (5.13) is satisfied when we substitute T= W =0.

We “remove” the singularity at » = v, from (5.13), and we introduce a function
X = X(q, n) by writing

T+p W-p—v 1+JgX
T—u WHu+v 1-v/gX’

(5.18)

q=v—Vp.

In other words,

_pW=(r+u)T

vax= WT - pu(u+v)’

(5.19) T=p[W+(v+u)WqX]1/D,

D=v+u+/qgXW.
Now we can rewrite (5.13) in the form K + L+ M =0, with

K=(W=-2T)D=W(v—u)+VqgX(v*+4v—u?),

24utv+ W 1+vVqZ

L=D(p+1)In—E" 2" 2 _ D(u+1) In A=

DIy —w = PwtDin—r>,
THu Wep— 1+V9 X
M=Duln—£ 2"E~¥_pu1 Vg

T-p Whp+r 1 Vgx



UNIFORM ASYMPTOTIC EXPANSION 257

where

_ NEEED _ \/q+1/0—1/1
24u+v g+2+ptu,

We expand K+ L+ M in powers of q. A first observation is that F(q, X, u):=
(K + L+ M)/V/q is a function of g, X, u, the factor V¢ being completely removed. We
expand F in powers of q. We have

F(q, X,M)=F0+F1‘I+F2q2+' Tt

where F,(X, u) do not explicitly depend on g (or »). We compute

2Vvg— v (vo+u)(m+1)
Fo=(vo—pu)Vvo—vi—2u(votu)X + : 21_’_;_‘_‘: a H2u(vot+p) X
()

It appears that Fy(X, u) =0, and that, hence, we can continue with the equation
G(gq, X, n)=F/q=F,+ F,q+---=0. We claim that the equation G(g, X, u) =0 can
be solved for X = X(q, u), and that X is analytic for small values of both arguments.
By calculating some limits, it follows from (5.18) or (5.19) that X (0, 0) = —31. This is
used to show that G(0, —3, 0) = F,;(0,0)=0. In order to apply an Implicit Function
Theorem (see [1, p. 36]), we need to show that G is analytic in a neighborhood of
(0, —3,0) and that G(0, —3,0) =0, Gx (0, —3, 0) # 0. It is straightforward to verify that
G(g, X, p) is analytic in a neighborhood of (0, —3%, 0). Furthermore, Gy (0, —3,0) =
oF,/3X =4 at (X, u)=(—3,0). We have shown that we can solve the equation G =0
and that the solution X (g, u) is analytic in a fixed neighborhood of (0, 0).

It remains to show that 87 is analytic. We consider T of (5.2) given in the middle
of (5.19). We are done when we have shown that w/D is bounded away from zero
when u is small, since then we can divide the denominator of T by w. From the above
result it follows that we can expand

X(g,p)=Xo(q)+ X\ (Q)pu+- -+,

where the coefficients X are analytic functions of g. From the first equation of (5.19)
we compute Xo=-1/vVv—v,=-1/vVv+4. Hence

D=v+u+(r=v)Vv—1Xo+0(n)=0(u)

as u - 0. It now follows that T~ is an analytic function of g, u in a fixed neighborhood
of (0, 0), and, consequently, that 82 is analytic. This proves the theorem. 0

Remark 5.1. 1t is possible to base a proof on the differential equation (5.14). The
condition B(0) =0 is not enough to prove the theorem, since the ratio 8%/ v (at » =0)
turns out to be undefined. Requiring that this ratio equals ¢,(u) is sufficient, however.

In Theorem 4.1 we expanded the functions of (4.10) at the critical points +w,,
and in (4.14) we used a representation of ¢ in which y can be viewed as a part of the
complete expansion. In fact, (4.14) is a change of variables. In the present case we
expand at the critical points w,, and the expansions have the form

(5.20) Y(w)= g [a, + wb, ] V¥, V=Vw)=(w—w_)(w—w,).

When ¢ is sufficiently smooth, the coefficients a,, b, are uniquely defined. The first
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few are given by

_Yowe—dwo Y=Y
(A s bO_ s
W+_W._ W+-W_
_boWO"l//iW—_llf'—W# _l//i“'l//—_zbo

s bl

1=

(w+-—w-)2 a (W+"W—)2 ’

where wo=w,+w_, and ¢, = ¢(w,), etc. For analytic functions the coefficients can
be represented as Cauchy-type integrals. We have

1 1
(5.21) ak=——.I (w=wo) V"I (w)g(w) dw, bk=——.J Vi w)g(w) aw,
27 J ¢ 27 ) e
where C is a contour around the two critical points; ¢ must be analytic inside C and
continuous on C. This can be verified by substituting a new variable w = v+ wy/2.
Then we have

://(w)=f<v+%)=z aVE+vY b VK, ck=ak+-;-w0bk.
By separating odd and even parts (with respect to v), and representing c;, b, as Cauchy
integrals in the V-plane, we arrive at (5.21). (Note that a circle around the origin in
the w-plane is traversed twice in the V-plane.) For MacLaurin series the domain of
convergence is a disc. For expansions as in (5.20) the domain of convergence is defined
by |V(w)|<|V(w,)|, where w, is a singularity of y; this domain is bounded by a
Cassini’s oval with foci at w... See also [7, Exercise 24, p. 149].
The parameter ¢t of (5.12) is represented in the form

(5.22) t=w[B+Cw+ V(w)y],

where B, C do not depend on w, and we require that the points {w_, 0, w,} correspond
with {t_, 0, t.}. This gives for B, C the values
(5.23) B wit_—w2t, ’ Co Lw_—t_w, '
wow_(wy—w_) w_w, (w,—w_)

The critical points w., . are not analytic for small values of the parameters. However,
we have the following lemma.

LEmMA 5.1. B, C, wow_, wy=w,+w_ are analytic functions of u, v in a fixed
neighborhood of (0, 0). Moreover, B=1+0(1), C = 0(1) near (0, 0).

Proof. We use the notation of Theorem 5.1. We have wo=In(1+u) and the
product w,w_ is an even function of W. So the singularity in W =v/qvv — v, is removed
when we expand w,w_ in powers of W. Using (5.2), we can write

(5:24) 20=-—H [I_Tln(lm)/u]
. W o w_ Wi—w_ .

We introduce a parameter n by writing

2
2= y[E+(v— p=-£ -1
B=v[E+(v=w)n], ="
Then we have T=2VqVE +vn; n=n(v, u) is analytic in a neighborhood of (0, 0).
Next we use w, —w_=In[(1++vqZ)/(1-+vq Z)]. Since the factor v¢ can be removed,
we infer that the fraction T/(w, — w_) is regular. It is easily verified that the expression
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between square brackets in (5.24) vanishes when » -0 and that w,w_= —vF, where
F = F(v, u) is analytic at (0,0), with F=1+0(r+pu), as v, u - 0. This proves that C
is analytic at (0, 0); the factor w in the first fraction of (5.24) takes care of the vanishing
of C at (0, 0). A more detailed analysis shows that C ~—u /24, u -0, v =0. The proof
for B now follows from the representation B+w,C =(t,—t_)/(wi—w_)=
T/(wy~w_). At v =0this expression reducesto u/In (u +1)=1+0(w),as u > 0. 0

COROLLARY 5.1. Let ¢ of (5.20) be analytic in a domain containing the points w., .
Then the coefficients a,, b, are analytic functions of the parameters w, v.

Proof. This follows from the fact that sum and product of w. occur in V(w) and
that the Cauchy-type integrals in (5.21) are analytic functions of w,+w_ and
wew_. a

After these preparations we are ready to consider the following theorem.

THEOREM 5.2. The function t(w, v, u) defined by (5.12), with B> defined in (5.13),
is analytic in a fixed neighborhood of (0,0, 0).

Proof. We write (5.12) in the form

(5.25) F(t, w, w, v) = tH(w) - S(1) =0,
where

Y -1 t
(5.26) H(w)=—,ulnew +(,u,+1)w+eWV_1—A, S(0)=+p—putin—.

Using (5.22) we can consider F as a function of w, with two known parameters u, v,
and one unknown parameter y. We expand F as in (5.20):

(5.27) F= k§0 [+ wo JVE(w),
where the coefficients u,, v, do not depend on w and t; they do depend on y, however.
The first coeflicients are
uy=—C?*b*a— C*a*—aB*-2aBCb+ fyB+ g,aC — B>
+ pa(Ccy+ Bdy+ Cbd,),
vo=—2aBC — C*b*~bB*+f,C+ go,B—2C?ab—2b*BC + g,bC
+ u(Cady+ Bey+ Chey+ bBdy+ Cb*d,),
u,=—B>— C?b*—2aBy —2Cbay —2C*a+f,y+ f,B—2BCb+ g,C +g,aC
+ w(aBd,+ Cbad,+ Cac,+ Ccy+ Bd,y+ Cbdy+ ayd,),
v, = —2bBy —2Cb*y —2BC —2Cay —2C*b+ g,y +f,C + g,B+ g,bC
+ w(bBd,+ Cb*d,+ Bc,+ Cad, + Cbc, + Cdy+ yc,+ byd,),
u,=—ay’+g,C+f,B+f,y—2By+g,aC — C*—2Chy
+ wu(Cac,+ aBd,+ Bd,+ Cc, + ydy+ Cbd,+ Cbad,+ ayd,),
v,=g:bC —by*+ g,y —2Cy + B+ £,C
+ u(Cb*d,+ byd, + Cbc,+ Cad,+ Bc,+ bBd, + yc, + Cd,),

where a, b are defined by w>’=a+bw+ V(w), i.e., a=—w,w_, b=w,+w_ and the
coefficients ¢, dy, fi, g occur in the expansions

wH(w)=fo+gow+fiV+gwV+£HVi+gwV2it. -

t
ln;= Cotdow+ e, V+diwV+ e,V +dywVi+- - -,
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The coefficients u,, vy vanish identically. This can be verified by straightforward
manipulations. It also follows from the observation that the representation (5.22) can
be viewed as a truncated expansion for ¢, in which the first coefficients B, C are defined
properly. If more coefficients D, E, - - - had been included in y (and defined properly),
more and more coeflicients u,, v, would vanish identically. When using (5.22), only
a few coefficients will vanish. Although u,, v, contain the parameter y (also via ¢,
d,), these coeflicients vanish too. Again, this can be verified by straightforward manipu-
lations.

It follows that we can proceed with the equation G =0, where

F(ta W, K4, V)

G = G(ya W, Ma V) = V2(W)

The coefficient u, contains a term —2By, with B given in (5.23). From Lemma 5.1, it
follows that B is bounded away from zero when the parameters u, v are small. The
remaining contributions to u#, containing the parameter y tend to zero as u, v - 0. All
coefficients u;, v, are analytic functions of u, v, and the convergent infinite series
(including coefficients v, and higher) represents a function of y, w, u, v that is analytic
in a neighborhood of (0,0, 0,0). Consequently, since 4G(0, 0,0,0)/3y =—2, we can
solve for y and this solution is an analytic function of w, u, v in a fixed neighborhood
of (0,0, 0). The same holds for ¢ given in (5.22). ]

Remark 5.3. A simpler version (u =0) of the above theorem is considered in
Theorem 4.1. Another simpler version (v =0) is given by [5, Thm. 2.1].

We still have to show that () (the image of strip H of (4.13) under the mapping
w—t defined in (5.12)) is large enough to contain a disc around ¢, with radius
p(1+1,)", k=3, p fixed. It is not difficult to verify that when B8 > u the proof runs as
in § 4.2. If w is much larger than B, the situation improves, and we can take k = 1.

We conclude by computing a bound for the quantity M,(B, w) used in (5.8), and
defined as in (3.16). The t-values on the circle C, are written as t =t, + 7vt,.+1, with
|7|=r, r fixed. We assume that at least one of the parameters v, u is large. We have

2 2
t+-B—t--,u, Int~ t++%-—,u, In t++% >+ 0(t3Y).
We denote the factor multiplying 7> by g. Observe that, roughly speaking, g belongs
to the interval [3, 1]. Using this in (5.12), we obtain

w

-1 1 1
q7'2~_“,ln:w+_1+(;¢+l)(w—w+)+v[ - ]

e”—1 e"+—1

Denoting the right-hand side by ¢(w), we see that (w,) = ¢'(w,) =0. A few computa-
tions give

2(v+ W)
(wy) =1+ =1+ 0(1).
vlws) (v+u+w)? o(1)
To solve the equation ¢(w) = g7°> we expand ¢(w, +v) =307y"(w,)+- - - . We can take

the fixed number r as small as we please. Then the solution of the above equation
reads w~ w, +7v/2q. Using this in (5.16), we infer that f(t)~4vt,/r, under the
condition that ¢ € C, and that at least one of the parameters », u is large. Consequently,
we can find a fixed number K, such that

M,(B, n)=KvV1+t,/r, v, uw €[0, c0).
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AN ASYMPTOTIC PROBLEM IN DERANGEMENT THEORY*

J. GILLISt, MOURAD E. H. ISMAIL%, AND T. OFFERY

Abstract. N elements, divided into sets of respective cardinalities {n, n,, - - -, n,}, k sets of each size,
where N =k Z:;l n;, are given. The probability is considered that a random permutation of the N elements
is a derangement, i.e., that it leaves none of the elements in the set to which it belonged initially. In particular,
an asymptotic estimate of this probability as k -> o0 is obtained.

It is known that the number of possible derangements can be represented by an integral involving
products of Laguerre polynomials. The probability is obtained by asymptotic evaluation of a more general
integral, involving the generalized Laguerre polynomials L{*)(x), of which the integral required here is a
special case.

Key words. derangement, Laguerre polynomials, asymptotic

AMS(MOS) subject classifications. primary 05A05; secondary 26C05

1. Introduction. Given finite sets, of respective cardinalities {n,, n,, -, n,}, k
sets of each size, we consider permutations of the entire set of kY ;_, n; elements. A
permutation will be called a derangement if none of the elements is left in the set to
which it initially belonged. Our main purpose is to estimate asymptotically, as k- o0,
the probability that a random permutation of the elements is a derangement.

Let D,(n,, n,, - - -, n,) denote the total number of possible derangements and let

P.(ny,* -+, n,) denote the probability of a permutation being a derangement. It is
clear that

(1.1) P (ny, -, n,)=Di(ng, - na)/( 2:_‘, )

Now it is known ([1, p. 135], [2, p. 4]) that

(1.2) Dy(ny, -, n,)= f[l {(=1)"n, 1} J:O{f[] L,‘i(x)}k e dx
where L,(x) denotes the Laguerre polynomial

(13) L= com( 1) 5

Since neither D, (n,, - -, n,) nor P(n,, - -, n,) have closed-form expressions,
integral representations such as (1.2) are useful for several reasons. First, we can use
(1.2) and the recurrence relations for Laguerre polynomials to derive recurrence
relations for D (n,, - - -, n,). For a number of such recurrence relations, some of which
seem difficult to prove from direct combinatorial considerations, see [2, p. 142]. Second,
an integral representation such as (1.2) proves the positivity of the linearization of
products of {(—1)"L,(x)}, and hence the existence of a discrete convolution structure
associated with {(—1)"L,(x)}. Third, as we will see in this paper, (1.2) can be used to
estimate the size of the D,’s or P.’s for large k. We write

(14) s=3nl (r=120),

* Received by the editors November 2, 1987; accepted for publication (in revised form) March 7, 1989.

+ Weizmann Institute of Science, Rehovot, Israel.

f University of South Florida, Tampa, Florida 33620. This author’s research was sponsored by the
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and so

a

k o a k
A9 P, esm) =0T n) {(slkn}"‘j (i Lo} eax

i= 0

We will show that, as k- oo,

2 _ <2
(1.6) P(ny, -+, n,)=exp (—53){1 525 s) =8 O(k‘z)}.
S 2s1k
It follows, in particular, that in the special case a=1,
(1.7) ’l(im P(n)=e™",

a result previously obtained by Askey, Ismail, and Rashed [1, p. 5], though the method
of proof there does not seem to extend to the case a>1.

The limiting relation (1.7) is interesting because it shows that P.(n,) ~ (P(1))™,
i.e., the probability of having a derangement of type n,, n,, - - -, n, (k times), k- o0,
is asymptotically equal to that of having n; independent copies of the classical
derangement problem with k> c0. Now (1.6), which we will prove, is more interesting
because it shows that

(Pelm,my, -, mo)p~ T {Pu(m)}

a surprising result with an obvious combinatorial interpretation.
Equation (1.6) will follow from the asymptotic estimation, as k - co, of the integral
in (1.2). However, we will begin by examining a more general integral, namely,

o a k
(1.8) I(a)=J {H (—1)""L(,,‘,")(x)} x% e *dx
0 i=1
where the Lf,‘f‘) are generalized Laguerre polynomials defined (for & > —1) by
n + m
(19) 1= 5 on(1 o)
m=0 n—m) m!

It is not known whether the integrals I(«) of (1.8) are nonnegative for a > —1.
When a =0 the nonnegativity of I(a) follows from the combinatorial interpretation
of [2]. The nonnegativity of I(«) for a # 0 is difficult to prove because each Laguerre
polynomial L;,(x) in the integrand has n simple zeros in the range of integration. It
will be shown that, for large k,

u —k
(1.10) I(a)=(27r)1/2(ks1)ks'+““/2{.]:[ ni!} exp{~ksl~%}{l+£+0(k_z)}

where
h={(1+12a +18a?)s]—125,5;+ 653+ 6(a +1)s,5,}/1253.

In particular,
a —k
I(O)=(27r)'/2(ks1)ks'“/2{ 1 m !} exp {—*ksl-—ﬁ}
i=1

§1
1 5,(285—55) — 53 5 }
31— - +O0(k .

{ 12ks1 2kS:: ( )

(1.11)
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Now,
a k
Pc(ny, -, n,) ={.]:[1 n; !} {(ks;)}7'I(0) (by (1.5))
= (2m)"2(ksy) "V *{ (ksy) 1}
(1.12) { 1 5,(285—5,)—53 S }
! 12ks, 2ks3 +Ok™)
: exp {_ksl —%}’
1
while, by Stirling’s Formula,
(1.13) (ks))!'=(2m)"?(ks,)* "2 exp (—ks,){ 1+ +0(k™)§.
12ks
1

Estimate (1.6) now follows immediately from (1.12) and (1.13). It remains to establish
(1.10).

2. Proof of (1.10). We will use the Laplace approach (cf. [4, p. 81]), writing

2.1 I(a)=Jwef(x) dx
where
(2.2) F) =k T In{(~D)"LE )} +a Inx—x

It will turn out that interest centres entirely on large values of x, where (—1)""Lf,‘j‘)(x) >0,
and we may therefore ignore questions about logarithms of negative quantities.

2.1. Maximum of the integral. Let Q(x)=[]_, {(—1)"L{’(x)}. Then
S(x)=kInQ(x)+alnx—x
and so the extremals of f(x) are to be sought among the roots of the equation
(2.3) (x — @) Q(x) = kxQ'(x).

This is a polynomial equation of degree s,+ 1. It is clear that, for large k, there will
be a root close to x =0, and s, — 1 roots close to those of Q'(x), all bounded indepen-
dently of k. On the other hand, if

Q(x)=apx" i +a; x4+,
then (2.3) becomes

kx(syapx ™'+ ) =(x—a)(aex"+a; x" 1+ 0),
ie.,

aox* ' —{(ks;+a)a,—a}x" 1+ - =0

so that the sum of all (s, +1) roots is ks, +a —a,/a,. It follows that the remaining
root will be

(2.4) Xo = ks, + O(1).
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For large k this will clearly be the largest root and it is easily verified that f(x) will
attain its global maximum there. It remains to estimate x, more precisely.
For any fixed a > —1, write

(2.5) va(x) = L3 (x)/ LY(x);
then (2.3) becomes

a

o
(2.6) kY o, (0=1-1.

But y = L{?)(x) satisfies the differential equation ([3, p. 781])
2.7 xy"+(a+1—x)y'+ny=0

and hence v, satisfies

(2.8) x(vh+v2)+(a+1-x)v,+n=0.

However, L{*(x) is a polynomial of degree n, and so v, must be of the form

20
X X

for large x. We deduce, by successive approximation in (2.8), that

(2.9) 0,(x) =£+ "("x": @) nin+ “)(33" =D L o9,

It follows that

a +
(2.10) V(x)= 3 v, (x)=2+2720, 24 o(x7Y
i 2 3

i=1 X p X
where
(2.11) c=25;+Ba—1)s,+a(a—1)s,.
Equation (2.6) now becomes

+

(2.12) 1—%= <%+%+x—c3 : )

Starting from (2.4) we obtain, by successive approximation in (2.12),

Sz+2as1 t

(2.13) Xo=ks; +———+-—+0(k™?)
5 ks

where

(2.14) t=2s5,5—55—55—a(a+1)s].

2.2. Taylor expansion of f(x) about x =x,. Since
(2.15) £(x)=kV(x) +§—1

it follows that, for r=2,

(2.16) FOx0) = kVI ™V (x0) + (=)' (r—1)axy".
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Substituting in (2.16) from (2.10) and (2.13) we get, after some manipulation,

(2.17) J(x) = f(x0) = A(x = x0)*+ B(x = x0)* = C(x —xo)* - - -
where
I PN _e . 3
A= 2f (XO)_st,{l ks, k2 4+0(k )}
——m 3t 3
(2.18) B= f (x0) = =D 2{1 k1 k2 ——+O(k™ )}

1 ) 1 { 3a 6t 3}
= —— = — — —_
C==03f =53 ks, Tt T O

2.3. Estimation of ¢/*v, By (2.2),

a k
(2.19) e = x e""°{[[ (—1)""L5,‘,.’)(xo)} .
We write
(2.20) (-D)"L(x) =% G,(x)
where
+ -1)(n+ +a-—
G,,(x)=1-—n(n a)+n(n 1)(n az)(n a 1)+O(x_3)
2x
so that
+ +a)2n+a-—
(2.21) In G,(x) = —1n¥e) _nnte)@nta=l), , -5
xo 2x0
and hence

a a -1
I (-1 =x; {n n !}
i=1

i=1

ox {_s2+ as; 253+ (Ba—1)s,+a(a—1)s,
P Xo 2x;

+ 0(x63)},

e/ = x& e""*’{

Il (—1)"'~L,,i(x>}

i=1

—k
(2.22) x& *“{n n; }
k(s,+ k[2s;+ (Ba—1)s,+ -1
-exp{—xo— (Szx asl)_ [25;+ (3 2):’22 a(a )sl]+0(kx53)}.
0 V]
Substituting from (2.13) we get, after some manipulation,
-k
a 2s,+
(2.23) ef("o):x'g‘!”‘{ﬂ n; !} exp{—-ksl—-—sz—% 2ks? s+ O(k™ 2)}
i=1 1

where

g=65,5,—4s3—3(a+1)s,;5,— a(5a+3)si.
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But
s,+2as t _
x0=ks1{1+‘2ks—%l+k2s‘l‘+0(k 3)}
and so
X0\ s,+2as, 2t—(s,+2as,)’ 4
2.24 In{— )= + +O0(k
(2.24) n(ksl) ks3 2k*st O(k™)
whence
Xo S2+2asl )4 -2
2.2 ks, + —|=—=———+—=—+0(k
(2.25) (ks tn (22) =220 Pt o)
where
(2.26) p=4s5,-353=2(a+1)s,5,—2a(a+1)s3;,
ks, +a
Xo \ s,+2as;  p _2}
. - = e L e .
(2.27) (ksl) exp{ s, 2ks_;,+0(k)

From (2.23) and (2.27) we get

a -k +
(2.28) /0 = (ksy)kit { Il n !} exp {—ks1 _RTAh ———q—;+ O(k‘z)}
i=1 5 2ks;

where
(2.29) q=2s;53—55—(a+1)s;5,— a(3a+1)s3.

2.4. Estimation of [q ¢’/ dx, It follows from (2.17) that the integral can be
estimated by

* —Au?+Bu3—Cu* * o —Au?+Bu*—-Cu?
e du= — e du
(2.30) ,[.xo (J—oo J'——oo )
=X-Y (say).
We begin by estimating Y:
0<y= [ " eamece g,

r —Xy Au?
(2.31) < e ™ du since A, B, C, are all positive

J —00

= e du.
v Xo

But for large k, x> ks;, by (2.13), and hence

o< Y<J e du

ksy
(2.32) = A"V? Erfc (ks,A"?)
~ (2ks;)"? Erfc (Vks,/2) by (2.18)
~2m Y exp (—ks,/2)
(cf. [3, p. 298].
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To estimate X we write v°= Au’— Bu®+ Cu* leading to

(2.33) u=av+pv’+yv’- -
where
(2.34) a=A""  y=3AT"}(5B*-4AC).
We then get
X ~ eV du
[ 2 du
= 0224
J P e
2.35 R
(2.35) = e " (a+3yv’*+---)dv
o —00
~Va(a+3y/2)

1
=E~/? A772(16A*+15B>~12AC).

Substituting again from (2.18), we obtain

1+6a

(2.36) Iwexp {f(x)—f(x0)} dx=\/27rks1{1+

0

+O(k"2)}.

2.5. Proof of (1.10) and (1.6). It follows from (2.1) that

o

I(a) = />0 J’ eI (%) gy
0

a —k
= (ks )este E g Stasi g 2 }
(ks,) {.I=In n; } exp{ ks, s, 2ksi+0(k )

1+6a
12ks,

-v21rks1{1+ + O(k‘z)} by (2.28) and (2.36)

a -k +
=(27r)1/2(ks1)ksl+a+l/2{ H n; !} exp{_ksl__SZ_a_sl}
i=1

§

+ i-
. {1 L {1F+6a)si—6q 61‘2'1);; 69, O(k'z)}
1

a -k +
= (21r)'/2(ks,)ks'+““/2{ 1 n !} exp {—ks, —%} {1 +£+ O(k‘z)},
i=1 1

i.e., (1.10).
Equation (1.6) now follows as shown in § 1, (1.12), and (1.13).
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3. Some numerical results. Table 1 may give some idea as to the accuracy of

approximation (1.6) for even quite small values of k. All results are correct to the
fourth decimal place.

TABLE 1

Direct evaluation Asymptotic

(ny, -+,n,) k by (1.5) approximation
2 4 0.1179 0.1184
2 6 0.1243 0.1241
3 5 0.0398 0.0398
1,2 3 0.1703 0.1726
1,2,3 2 0.0779 0.0799
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THETA FUNCTION GENERALIZATIONS OF SOME CONSTANT TERM
IDENTITIES IN THE THEORY OF RANDOM MATRICES*

P. J. FORRESTERY

Abstract. The probability distribution for the location of the eigenvalues in Dyson’s unitary random
matrix ensembles is generalized to involve theta functions. At three special values of a parameter, correspond-
ing to Dyson’s orthogonal, unitary, and symplectic ensembles, the normalization constant of the probability
distribution is calculated. The results can be viewed as giving the constant term in the Laurent expansion
of the multivariable function [1}., ,_, (1—w,/w)"*(q*w,/w;; ¢*)% for T'=1, 2, and 4.

Key words. random matrix ensembles, constant term identities, g-series
AMS(MOS) subject classifications. 26B99, 26C99

1. Introduction and summary. The probability distribution for N points on a line

(1.1) Pyr(xy, X5, 0 0+, Xn) dxy dxy - - - dxy
where
ar
(1.2) Pyr= CX:'r{ f{ N [61(7r(x —x;)/ L, q)l}
1sj<ks=

is a natural generalization of a distribution first studied by Dyson [5]}. In (1.2)

0,(z,q)=—i _Z (=1)"g(nV/2? gritnt/z

(1.3) .
=2q1/4 sin z 1—1 (1_q2n eZiZ)(l_an e—2i2)(1_q2n)
n=1

and Cyr denotes the normalization constant. Dyson’s probability distribution is
reclaimed in the ¢—0 limit of (1.2), this representing the eigenvalue distribution
function of three ensembles of unitary random matrices (with 7x/ L identified as the
phase 6) at the special couplings I'=1, 2, and 4. These three ensembles are directly
related to the three classical groups: orthogonal, unitary, and symplectic [6].

For general g <1, (1.2) has three further physical interpretations. First, Pnr
represents (up to a constant) the Boltzmann factor of the classical one-component
plasma with the logarithmic potential, interacting on a line with doubly periodic
boundary conditions. To see this, we observe that the function

1 o) e2'rri(mx/L+ny/ w)
1.4 b =
(1.4) X =0m LW o Z o (m/LP+ () W)
(m,n)#(0,0)

satisfies the two-dimensional Poisson equation
(1.5) V2®(x, y) = —2mw(x)

and is periodic in x and y (periods L and W), respectively. It has been shown by
Glasser [9] that (1.4) can be summed to give

2 .
x —mW/L

0 Z4+2
‘(”(L L)’e )

my
1.6 d(x,y)= —lo
(1.6) (53 =y~ o8

* Received by the editors July 25, 1988; accepted for publication (in revised form) March 1, 1989.
t Department of Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia.
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Thus with
(1.7) g=e™'% T =e’/ksT, andy fixed

where e denotes the magnitude of the charges, the plasma interpretation of (1.2) follows
immediately.

The second physical interpretation of (1.2) is as the ground state wavefunction
of a quantum many-body problem. This observation is due to Sutherland [14] who
showed that Py satisfies the Schrodinger equation
N 9’ Pyy

(1.8) P_Nlr E] G(X-)z

= V - EO
where

V-E;= ¥ (I’N(¢*(xc—x)+¢"(xc—x)) — 2 (T = 1) (%, — x;))

(19) 1sSj<k=N
+I*N(N—-1)(N-2)n/L.
In (1.9)
_m0(mx/L, q)

(1.10) $(x) = Lo,(mx/L, q)
and

__TLOO)
(1.11) =776 6,0)°

In the large L (thermodynamic) limit, the potential V can be written as two parts: the
one-dimensional Coulomb potential (with periodic boundary conditions, period L)

4N 4Nx2)

(1.12) Vo(x)=l“2<——LW2|x|+L—2“7

and a short-range potential

, 4Nx (|x| x 2I(C-1) 1
(1.13) Vi(x)=T LW2( X —coth (W)) + W2 sinh® (/W)
(Note that our #W is denoted r in [14].)

The third physical interpretation of (1.2) follows from the observation that when
multiplied by a suitable function of the nome g, Py, satisfies the N-dimensional heat
equation (see (2.18) below). Further, suppose g = e *"" /Y D denoting the diffusion
constant. Then the function gn(q)y in (2.18) represents the probability that N walkers
undergoing Brownian motion, initially equally spaced on a circle of circumference
length L, arrive at the points x,, - + -+, Xy in time ¢ without their paths intersecting one
another. Walkers whose paths cannot intersect have been termed vicious in [7].

In this paper we address the problem of evaluating the normalization Cyp in
(1.2), which is given by the N-dimensional integration

(1.14) CNr:(Iﬁ J dxl){ I1 |01(7T(xk_xj)/L; ‘I)|} .

=1Jo 1=sj<k=N

An interesting alternative representation can be obtained by using the product form
of 6, given in (1.3), and noting

(1.15) |2 sin (@ —b)|*= (1 — ¥ @™ P)(1— e 2*7)),
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The integrand now consists of simple factors that can all be expanded in a multivariable
Laurent series in terms of the e>™/%j=1,-- - N. Clearly, the only term that would
give a nonzero contribution to the integral is the constant term (CT), which is indepen-
dent of all the ™™’/ (but of course still dependent on g). Writing

(1.16) w; = e” ™/ k

we thus have

(1.17) Cnr= LN(qz; qz);N(N_l)/zqu(N_l)/sKNr
where
N " r/z( Wi >r
1.18 Knr=CT 1-— *—=:q7) ,
( ) a k,llll( Wl) 1 Wy 1 ©
k=1

the symbol CT denoting the constant term in the Laurent expansion (q is regarded as
a constant). In (1.17) and (1.18) we have introduced the notation

(1.19) (z; @)oo= lojo(l —zq").

The Laurent expansion in (1.18) is to be constructed by applying the binomial theorem
to each individual factor. In general, this will give a formal series, since convergence
will only occur when |w,|=1, k=1,2, - -, N. The cases I'=2m, m a positive integer,
are the only exceptions; the Laurent expansion is then convergent for all w; # 0.

If g =0, the right-hand side of (1.18) reduces to

N Wy r/2
(1.20) CT I] (l—-—) ,
kI=1 wy
k=1

which was first considered by Dyson [5]. On the basis of three exact evaluations (I'=1,
2, and 4), (1.20) was conjectured to equal

(I'N/2)!
(r/2)™ -

This was subsequently proved by Wilson [17].

Although the identity equating (1.20) and (1.21) has been extensively generalized
in a number of directions ([1]-[4], [12]; [10] gives a comprehensive account of pre-1984
literature), none of these works give the value of (1.18). Below we will provide two

new constant term identities that give the evaluation of (1.18) for '=1, 2 and 4.
We find

(1.21)

1 (N-1)/2 o q2Nn2+4nj
—(N-D/2 — N
N! W(N_l)/z Jj=1 n=-o0 Nn+_] ’ Odd’
(122) KN1=‘(q2; q2)(N—-1) 1 N/2 q2Nn2+4n(j—1/2)
- 4 00000 N
N/ ,E, . Nn+j—1/2" even,
(1.23) Kny= N! (@*; 4*M)a
(q2; q2)ZO(N—-1) (q4; q4)°0 H
VNI N D1\ aneteanc
(1.24) Kna=—5—ant Il X (2"N+J +—> g*NmTran D),
(q > q )oo Jj=0 n=-oc0 2



THETA FUNCTION GENERALIZATIONS 273

The remainder of the paper consists of three parts. First, we study an identity due to
Sutherland [15], which is extended to calculate a previously unspecified proportionality
constant. Second, we apply generalizations of integration techniques used in the theory
of random matrices [13] to deduce the identity (3.17) from which (1.22) and (1.24)
follow. Third, an identity of Macdonald [11] for the root system Ay is used to derive
(1.23).

2. Some determinant identities. The following result has been derived (but not
formally proved) by Sutherland [15].

THEOREM 2.1. Let N be odd and fy(q) be some yet-to-be-determined function of
the nome q. With the notation

(2.1) Ylx, o ,xns )= I 6(w(a—x0); q)
1=k<I=N
we have
1
(2.2) MN(@Y(x1, -+, %85 9) =J' dy det [03(77(39+‘Y_I/N); ql/N)]j,l=1,~~~,N~
0

The 6, function is defined by (1.3) while

(2.3) 0(z9)= L " e
(This is the notation of Whittaker and Watson [16].)

Proof. Both the left-hand side (LHS) and right-hand side (RHS) of (2.2) are
antisymmetric functions of x,,:--,xy that vanish whenever x,=x., k k'=
1,2,- -+, N (k#k'). It thus suffices to check that both sides of (2.2) are the same
function of x; with x,, - - -, x,y regarded as fixed. We do this by studying the periodicity
properties of each side.

From the definitions (1.3) and (2.2), and noting N is odd, it is immediately obvious
that both the LHS and RHS are periodic under the translation x,— x, +1. Now write

it

q=e"",where Im (7) > 0, and consider the periodicity of both sides under the mapping
X, x;+ 7. Since

(2.4) 0,(m(x+7); q)=—q"" e ™ 60,(7x; q)

the LHS remains the same apart from a factor

(2.5) q—(N—U e 27X (N-1) ﬁ o2,
1=2
After deleting the minus sign prefactor, (2.4) holds with 6, replaced by 6;. Thus, after

replacing x, by x,+ 7, the Ith term of the first row of the determinant in (2.2) can be
written

(2.6) g NTVYN g 2wty NXN=Dg ((r(x +y+7/N—1/N), g/ N).

On the other hand, according to (2.4), the Ith term of the jth row (j=2,---, N)
can be written as follows:

2.7) q"/N MY NG (r(x;+y+7/N—=1/N), ¢"'™).

If in the first row we note that e>™ N1/ N = ¢=2ml/N 3 common factor of e >™"/N can

be removed from the Ith column (the product from I=1,-- - N of such a factor



274 P. J. FORRESTER

equals 1). Furthermore, removing obvious common factors from each row of the
determinant, the RHS becomes

N
q—(N—l) e—2m’xl(N—1)<H e2rrix,>

1=2

(2.8) 1
. I dy det [0;(m(x;+y+7/N—=1/N); ™) ju=1.-.n-

0

The integral is in fact the same as the RHS of (2.2) since the line integral along the
path y+iIm(7)/N, 0= y=1, is the same as that along the unit interval 0=y =1, by
Cauchy’s theorem and the periodicity of the integral. Comparing (2.5) and (2.8), we
see that the periodicity factors under the transformation x;~ x,+ 7 of the LHS and
RHS are the same.

Finally, consider the ratio RHS/LHS. From the above results, this is a doubly
periodic function with periods 7 and 7. Furthermore, since the zeros of both the LHS

and RHS are simple and occur at x;, = x,, - * -, x5 (mod 7 and mod 7), we have that
RHS/LHS is a doubly periodic entire function, and thus by Liouville’s theorem is a
constant. Hence we have the result (2.2). O

The corresponding result for N even (which is not given in [13]) is Theorem 2.2.
THEOREM 2.2. Let gn(q) be some yet to be determined function of q. Then for N even

1

1
(29) gn(@)¥(x, -, xns Q)zj dy det [01(77'(39"'7_‘1(]‘); ql/N>:|
0 jl=1,+,N

where  is as defined in (2.1).
The proof is very similar to that above, so it will not be given here.

2.1. Calculating the proportionality constants. Let us now take up the problem of
calculating fy(q) and gn(q) in (2.2) and (2.9). We have Theorem 2.3.
THEOREM 2.3. The proportionality constants in (2.2) and (2.9) are given by

(2.10) fN(q) — gN(q) — NN/2q—(N—1)(N—-2)/24(q2; q2);-O(N—1)(N—-2)/2'

Proof. We will make use of an identity of Macdonald [11] (see also Andrews [1])
that states

w; Wi 1
2.11) CT{ (—’; ) ( =3 ) = N1
( lgjgc_S_N Wi 1 ) qu 1 © (g5 Q)c{;j '

The product on the LHS of (2.11) is simply related to (2.1). Using (1.3) and the notation
(1.16), we see

w; Wi
Wi, W, — sN(N-1)/2 ~N(N-1)/8( 2, 2\=N(N-1)/2
Il ( ,q> (q ,q) =i q NINTI(g?; g?) TN/
1sj<k=N \Wg © w -

(2.12) g
N mi(N—2k+1)x
: He ¢ k ll’(xl,".’xN;q)'

k=1
To proceed further we must specify the parity of N. Let us suppose N is even.
Our strategy is to substitute for ¢ according to (2.9) and integrate from zero to 1 for
each x,, k=1,---, N (which is equivalent to calculating the constant term). Since
the constant term of the LHS is given by (2.11), the only unknown will be gn(q),
which will thus be specified.
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Note that by expanding the determinant in (2.9) row-by-row according to the
series definition of 6,, and using the definition of a determinant as a sum over
permutations, we have

N 1
( I1 J' dx;. em(N—Zkﬂ)x") Y(x, XN 5 q)

k=1Jo

(e o) o

“s@0* T o T (T o)

ny=-—00 nn =—00

(2.13) N .
5 e<P>J (H exp (2mily— P())/ N)(m; +1/2))

P=1 Jj=1
1
. J dx; exp (2mix;(n;+ N/2+1 ‘j))>-
0

In the integral over x; the only nonzero term is when
(2.14) m=j-1-N/2, j=1,2,--+,N
and so the RHS of (2.13) becomes

(2.15)  gN(g)gNTVm Ii‘ e(P) TI exp (—2@iP(j)(j—(N+1)/2)/N).

P=1 j=1
The sum over permutations in (2.15) is by definition equal to
(2.16) det [exp (=2#wik(j—(N+1)/2)/N)]jk=1,--.~

Multiplying this determinant by its complex conjugate gives N, so up to a phase of
unit modulus, (2.16) is equal to N™/2. To determine the phase, we note from van der
Monde’s determinant expansion that (2.16) is equal to

(2.17) [ (o= momm), =,
1=k<j=N N

which says immediately that the phase of (2.16) is (—i) Y™ ~"/2 and so comparison of
(2.11) and (2.15) gives the evaluation of gx(gq) in (2.10). An analogous argument,
using (2.2) instead of (2.9), gives the same result for fy(gq). O

As an aside, we note a different proof of the following remarkable result due to
Sutherland [15].

THEOREM 2.4. With q=e™ and gn(q)¢ given by (2.10) and (2.1),

N 2

(2.18) T a(a 7 (e (@)) = 4miNL (g (@)0)

and similarly for fy(q). That is, the functions gn(q)y and fn(q)y satisfy the N-
dimensional heat equation.

Proof. We simply note that the RHS of the identity (2.9) obeys (2.18). The partial
derivatives can be performed row-by-row in the determinant, and the identity follows
immediately from the fact that a single 8, function satisfies the one-dimensional heat
equation, so that

82

(2.19) A

0,(7(x; = x); 9) = 4771—91(7T(x xi); q)- a
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Remark. Sutherland [15] has provided a different derivation of (2.18) based on
the Schrédinger equation (1.8). This approach can also be used to specify the propor-
tionality constants gy (q) and fy(g), but this was not carried through in [15].

2.2. A confluent form of the determinant identities. Consider the identity (2.9). Let
N = N,+2N,, where N, is even. Write Xn,+2p-1=Yp, p=1,2,* -, N, and take the
limit xn, +,, > y,. By first dividing both sides by

N,

(2.20) Tl Genprzp = ¥p)

p=1

and subtracting the (N;+2p —1)th row of the determinant from the (N, +2p)th row,
we obtain

gn,+2n,(q)(01(0, q))"’1¢(x1, S XN Vi YN )
1 0,(m(x;+y—1/ (N, +2N,)); g"/M+2N2)
_ j d
0

0:1(m(ya+y=1/(N;+2N)); "/ M*212)
In (2.21) we have introduced the notation

(2.21)

01(m(ya +y =1/ (N +2N,)); g/ Mi+2W) |

¢(x1,' T ,le,yla' ) ‘,.)’NZQQ)

(2.22) N, N,
= M 6(za-x);q) I T 63(w(y—x); q)
1=sj<k=N, j=1k=1
I 0 (=—»); q)
1=j<k=N,

and the first entry in the determinant holds true for the first N, rows (j=1,-:-, N;),

while the rows N;+2a —1 are given by the second term, and the rows N, +2a by the
third term.

3. The constant term identities. We are now in a position to evaluate the following
multidimensional integrals (or equivalently, calculate the following constant term

identities):
N 1 N, 1
IIE<H d&)(ﬂ dyk)|d>(x1,-'-,xNI,yl,-",yNz;q)I
(3 1) j=1J0 k=1 Jo
. - qu(Nl—-l)/8+NlN2/2+N2(N2—1)/2(q2; qZ)OI:)II(NI—1)/2+2N1N2+2N2(N2—1)X N,
where

N we) /2 2 Wk o NN Wi Za
o2 (o3, -20)
kl=1 Wy Wy w© k=1 a=1 Za Wi

(3.2) k=l
. 2 Wi 22 2 Za 22N2 zorzzzmz4
‘\a—:q 9°—;4q II (1-—)\9°—:4
Za co Wi o a,f=1 Zg Zg ©
a# B
and
B= (11 [ )wen, o xr
(3.3)

qN(N 1)/4(q qZ)N(N l)K
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where, from the notation (1.18),

N 2

(3.4) Kn>=CT | (1—ﬂ‘>(qzﬂ‘;q2> .
k=1 w; wy ©
k=1

In (3.1) and (3.3), ¢ and ¢ are given by (2.22) and (2.1), respectively.

3.1. Further identities for ¢ and ¢. To evaluate (3.1) and (3.3) we must further
transform the identities (2.9) and (2.21). The key step (again due to Sutherland [15])

is to expand the determinants row-by-row using (1.3) to obtain a formula analogous
to (2.13).

In (2.9) we multiply the resulting expression by

(3.5) iTN(NTDRNTN g det [ ETVDINT L, N .
k=—N/2,---,N/2—1

According to the discussion between (2.15) and (2.18), (3.5) is equal to unity. The
multiplication gives

en(@v(x, -+, xn5q)
(3.6) = ,“N(N“l)/2N~N/2q(N2—1)/12

1
: J dy det [ezﬂx’(kﬂ/z)es(ﬂ'N(xj +y)+ 77'7'(k+%), qN)]j=1,2,-~~,N

0 k=—N/2,--,N/2-1

The kth and k'th (k # k") member of each row j are now orthogonal on the interval [0, 1].
The procedure of multiplying by a determinant of the form (3.3) (this time of
dimension N;+2N,), allows the following result to be deduced from (2.21):

(3.7)

gN|+2N2(q)(0,1(0, Q))de’(xl, T, le,y19 e ,)"N2§ q)
- i—Nl/Z(N1+2Nz)—(Nl+2N2)/2q[(Nl+2N2)]2—1]/12

: T ETD 0y (ar(Ny +2N,) (x5 + y) + (ke +3); g N2N)
J dy det | ™20 (m(Ny+2N)(ya+9) + mr(k41/2); g N3N
DO (N +2N,) (o +y) + mr(k+1/2); g N2 |
a=1,---,N,

2
kzNz‘N./l“’,
N,+N,/2—-1

0

Here we have adopted the same convention of ordering the rows in the determinant
as in (2.21).

3.2. Evaluation of I,. To perform the integration in (3.1) we use an extension of
the method of integration over alternate variables [13] used to compute I, in the g0
limit by Forrester in [8].

The integrand in (3.1) is symmetric in x,, - - -, X5 so the ordering

(3.8) 0=x,<x,<++-<xy=1

can be made provided we multiply by N!. For the integrand we substitute the identity
(3.7). From the structure of the determinant in (3.7), the integration over x, from zero
to x, can be performed by integrating each term in the first row. Next integrate over
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x; from x, to x, by integrating every term in the third row. Since

3.9) J4dx=j4dx—szx
X3 0 [

we see that by adding the first row to the third, the integration can be taken from zero
to x,. Proceeding in this fashion until x,, x5, - - -, xy,—; have been integrated over gives
for the kth entry of the (2j —1)th row (j=1,2,- -+, N,/2)

xzj‘ . 1
(3.10) J dx ez"”‘”‘“/z)ﬂs(w(Nl+2N2)(x+ y)+ m(k+5) ; q(”'””2>>.
0

The integrand is now symmetric in X,, X4, - * * Xy, so the ordering implicit in (3.8)
can be removed, provided we divide by (N;/2)!. Next we write the determinant as a
sum over permutations, and write each of the 6-functions in series form. Ordering the
permutations P(2l)> P(21-1),1=1,2,---, N,/2+ N, gives the expression
I= 2'N1/2+N217_N‘/2(N1 + 2N2)—(N‘+2N2)/2q[(N‘+2N2)2——1]/12

[e o)

g (@010, )™ T Y S e(P)

ny=o0 NN 42N, = =% PQ2D>P(21-1)

Z
~

2 1 1 )
(3.11) k=1 ((N1+2N2)nP(2k)+P(2k)+% (N;+2N,)npak—1)+ P(2k—1)+3

((N1+2N,)(np@ky = Npai-1)) + P(2k) — P(2k — 1))

1 N/2+N,
. d‘y H q(Nl+2N2)(n§,(2,)+n§,(2,_l))+2n,,(2,_l)(P(21—1)+1/2)+2n,,(2,)(P(21)+1/2)
0 1=1

1
. j dx exp (27Tl(x+'y)[(N1+2N2)(np(21_1)+ np(zl))+P(2l)+P(2l_l)+l]

0

where for each I=1,2,---, N;+2N,
(3.12) P(l)e{—N,;/2—N,,—N,/2—N,+1,:-- N;/2+ N,—1}.

From the integration over x in (3.11) and the allowed values of P(I) in (3.12),
we see immediately that the only nonzero terms in (3.11) occur when, for each
l=1’23‘ T, N1/2+N2’

(3.13) Npi-1) = ~Npr),

(3.14) P2 =Q(), PQ2I-1)=-Q()-1
where

(3.15) Q(DHef{0,1, -+, N,/2+ N,—1}.

Since the index on the sum over the n’s is arbitrary, we are free to relabel and write
npg;y = n; in all cases. Furthermore, all permutations given by (3.14) have even parity.
Hence (3.11) reduces to

I, =x"™M?(N, +2N2)—(Nl+2N2)/2q((Nl+2N2)2—1)/12ga1l+2N2(q)(0;(0’ q)™ ™

(N/2+N)! N;/2 2(N,+2N,)n2+4(Q(k)+1/2)n

q
3.16 .
(3.16) & M I NN et +
N. ® Nl . 1 2 i
. Z (N1+2N2)m+Q _+] += q2(Nl+2N2)m +4(Q(Nl/2+;)+1/2)m.
=1 m=— 2 2
j=1m 0
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We observe that the sum over permutations can be formed by the multiplication into

series of a product expansion of a polynomial. Substituting (3.16) into (3.1) and using

(2.10) and the product expansion of 6{(0, q), we have thus derived the following result.
THEOREM 3.1. Let N, be even, and Xy, n, be given by (3.2). Then

Xnon, =7 (g )T (%4_ N’) '/[(_]\2[1> ‘N !]

(3.17)
N,/2+N,~1
. {coejﬁcient of €N? in the expansion of k[_IO (A(k; q)+ ¢éB(k; q))}

where

© 1 2
(3.18) Alk;q)= ¥ I:(N1+2N2)n+k+5] PN 2N a1/ 2
and

© q2(Nl+2N2)n2+4(k+1/2)n

(3.19) B(k;q)= %

nemoo (N} +2N)n+k+3"

The results (1.22) (N even) and (1.24) follow immediately from (3.17) by choosing
N,=0 and N, =0, respectively. The result (1.22) for N odd can be derived from the
analogue of (3.17) with N, odd (the necessary identity is the same as (3.17)-(3.19),
except that the quantity N,/2 in (3.17) is replaced by (N,—1)/2, and in (3.18) and
(3.19), (k+3) is replaced by k).

3.3. Evaluation of I,. The constant term Ku, in (3.3) can be most expediently
evaluated by use of the identity

24) (20
1§jEc§N(Wj,q © 1 Wk,q o

(3.20) Nt
=( 1)N = 2 &(P) H qu2+(N+1 2P(1))m;, Nm+1=P(1)
5 Yimy P=1
where
N
(3.21) }’{mi}={(m,, s, my): Zl m;=0,m;eZeachj=1,---, N}.
j=

This identity is due to Macdonald [11] and relates to the root system Ay. In the present
context (for N even), (3.20) follows immediately from (3.6). To see this, rewrite the
LHS of (3.6) using the product expansion of the 8, function (3.1), and rewrite the
RHS by expanding the determinant row-by-row using the series expansion (2.3) and
integrating over .

From (3.3) and (3.20) we see

1 N1

Nt
Kne=7=—582 L X Z 2 &(P)e(Q) H wi () =(PO=Q)
(3.22) (95 9°) Yimy Yiny P=1 Q=1
. ﬁ qN(m2,+n2,)+(N+1—P(l))m,+(N+l—Q(1))n,.
Since
(3.23) P(),QHe{1,2,--+, N}

the only constant terms in (3.22) occur when
(3.24) P(h=Q() and m=mn, I=1,---,N.
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All permutations P then give the same contribution, so we can choose P(l) =1 provided
we multiply by N!. Hence

N! N
———— Y I qum2,+2(N+1—1)m,
(qz; q2)2N 2 Yoo 1=

KN2=
(3.25) N1 K N
=——on= | da [l 6;(ma+mr(N+1-2k); q°7).

(9% a9°) k=1

0

The second line of (3.25) follows from the first by using the series expansion (2.3).
From the product expansion of #; we have

N (q4N. q4N)N
(3.26) 1 6s(ma+mr(N+1-2k); ¢*N)=—"—"—"=
k=1 (9% 9w

Thus the integration over a can be done at once to yield the desired result (1.23).

03(ma; qz)-

Acknowledgment. I thank the referee for pointing out that (3.20) can be found in

[11].
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THE BOUNDARY LAYER FOR THE
REISSNER-MINDLIN PLATE MODEL*

DOUGLAS N. ARNOLDt aANp RICHARD S. FALK}

Abstract. The structure of the solution of the Reissner-Mindlin plate equations is investigated,
emphasizing its dependence on the plate thickness. For the transverse displacement, rotation, and
shear stress, asymptotic expansions in powers of the plate thickness are developed. These expansions
are uniform up to the boundary for the transverse displacement, but for the other variables there is a
boundary layer. Rigorous error bounds are given for the errors in the expansions in Sobolev norms.
As applications, new regularity results for the solutions and new estimates for the difference between
the Reissner—-Mindlin solution and the solution to the biharmonic equation are derived. Boundary
conditions for a clamped edge are considered for most of the paper, and the very similar case of a hard

simply-supported plate is discussed briefly at the end. Other boundary conditions will be treated in
a forthcoming paper.

Key words. Reissner, Mindlin, plate, boundary layer

AMS(MOS) subject classifications. 73K10, 35B25

1. Introduction. The Reissner-Mindlin model describes the deformation of a
plate subject to a transverse loading in terms of the transverse displacement of the
midplane and the rotation of fibers normal to the midplane [9], [10]. This linear
model, as well as its generalization to shells, is frequently used for plates and shells
of small to moderate thickness. Specifically, let Q denote the region in R? occupied
by the midsection of the plate and w and ¢ the transverse displacement of {2 and the
rotation of the fibers normal to , respectively. The Reissner-Mindlin model for the
bending of a clamped isotropic elastic plate in equilibrium determines w and ¢ as the
solution of the partial differential equations

(1.1) —div C £(¢p) — M ~*(gradw — ¢) = 0,
(1.2) —M~2div(gradw — ¢) = g,

in © and the boundary conditions
(1.3) =0, w=0,

on OQ. Here gt2 is the transverse load force density per unit area, £ is the plate
thickness, A = Ek/2(1 + v) with E the Young’s modulus, v the Poisson ratio, and k
the shear correction factor, £(¢) is the symmetric part of the gradient of ¢, and the
fourth-order tensor C is defined by

E
CT=D[1-v)T +vix(T D= ——
(=T +ve(DI], D= =y,
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87-03354 (RSF), and was partially performed at and supported by the Institute for Mathematics and
its Applications.

tDepartment of Mathematics, Pennsylvania State University, University Park, Pennsylvania
16802.

{Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903.
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for any 2 x 2 matrix 7 (Z denotes the 2 x 2 identity matrix). Note that the load
has been scaled so that the solution tends to a nonzero limit as ¢ tends to zero. The
Dirichlet boundary conditions (1.3) model a plate which experiences no displacement
along its lateral edge. This is commonly referred to as a clamped edge (which is the
terminology we adopt here), although the terms welded or built-in are perhaps more
descriptive.

The Reissner-Mindlin model is an alternative to the biharmonic model for plate
bending. The biharmonic model gives the transverse displacement as the solution to
the boundary value problem

(1.4) DA’wy=g inQ, wy=0dwy/dn=0 ondN.

With our scaling of the load function, the solution wg is independent of the plate
thickness. By contrast, the solution of the Reissner-Mindlin model depends in a
complex way on the plate thickness. It is the purpose of this paper to investigate the
structure of solution in its dependence on £.

We shall develop asymptotic expansions with respect to £ for w and ¢ (as well as
other quantities associated with the solution such as the shear stress). The expansions
are of the following forms®

wn~wo+ 2wy +BPwz -,
& ~ ¢o + T2 (2 + xPo) + 2 (Pp3 + xP1) + -

Here the functions w; and ¢;, the interior expansion functions, are independent of
t. The functions ®; are boundary correctors. They depend on % only through the
quantity p/t, where p is the distance of a point of Q@ from the boundary. More
specifically,

b, = éi(p/"'_’ 0)

where 6 is a coordinate which roughly gives arclength along the boundary (see § 2),
and the function @;(n,60) has the form of a polynomial with respect to 5 times
exp(—v12kn). Thus ®; represents a boundary layer function, which essentially lives
in a strip of width ¢ around the boundary. Finally, x is a cutoff function which is
independent of ¢ and identically equal to unity in a neighborhood of 9.

In §§ 3 and 6 we construct all terms of these expansions. Here we summarize
the results for the principal terms. The function wp is the solution to the biharmonic
problem above, wy solves

2 —1 . _ Owp _ -1 0
DA w=gapyte n® w=0 Fr =ga o twe oot

and w3 solves

Bw3 -1 6

DA%2w3=0 inQ, ws=0,
: 3 B 12V3K3(1 — 1) 8s°

Awy on 0N.

'In order not to introduce unnecessary distractions, in this introduction we use a slightly differ-
ent notation than in the following sections. The w; and ¢. of this section are A—%/2 times the corre-

sponding quantities used in the remaining sections, and Q,_z(r), 6) here is A~%/2 times Q, 2(v2n, 0)
used later.
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For the expansion of ¢, we have ¢ = grad wy, ¢ = grad ), where

1 oy
——mAwo, — =0 onaﬂ,

A’Y=0 inQ, ¢ 5
n

and
exp(—v12kn)
6k(1—v) 8Os
where s = g(0) is the unit tangent vector to dNQ.
We prove a priori estimates for all terms of the expansions in § 4, and establish
error bounds for the remainders in § 5. With these results, we may easily investigate
the regularity of solutions of the Reissner-Mindlin system and their limit as £ — 0.
Supposing that g is sufficiently smooth, we have the following estimates, in which the
constant C' depends on g, Q, and the elastic constants, but is independent of £. Here
|| - ||s and | - |s denote the norms in the Sobolev spaces H*(2) and H*(0N) (see § 2).

The transverse displacement w is regular uniformly in £, but the regularity of the
rotation ¢ is limited by the boundary layer:

éO(Tla 0) = A‘4)0(0a 0)8,

lwlls <C,  |@lls < CE™INOE/2=8) 5 eR.

Thus all derivatives of w remain bounded uniformly in L? as £ — 0, while for ¢, the
second derivatives remain bounded in L2, but higher derivatives will in general blow
up as t — 0.

The quantity ¢ := M ~2(grad w — ¢), which is related to the shear stress, is often
of interest. From the above expansions we get

A7 ~ gradwy — ¢2 — xPo + t(gradws — @3 — xP1) + - -,
so it has a stronger boundary layer. Indeed, ¢ is not uniformly bounded in H* for
s> %:
I¢lls < CEmnO12=9) 5 e R.

Of course, the boundary layer does not limit the regularity of ¢ or ¢ at a positive
distance from 09 nor does it affect the smoothness of their restrictions to Q. Thus

lllae @) +9ls + [Cllae) +1¢ls <C, s €R,

for any compact subdomain . of €.

In the limit as £ — 0, each of the variables w, ¢, and ¢ tends in L? to the leading
terms of its asymptotic expansions. The number of derivatives which converge and
the rate of convergence may be determined by examining the first neglected interior
and boundary terms of the expansions. We get, for each s € R, that

||w b w0||3 S sz,
Il — poll, < CEmin@/2-0),
I¢ — Algradw, — ¢a)ll, < CERO/21/2-9),
Note that for ¢ and ¢, the rate of convergence depends on the Sobolev norm under

consideration. For each of the variables, taking more terms from the expansions
increases the rates of convergence. For example,

lw — wo — F2ws||s < CE?, ¢ — do — E2(p2 + xPo)||s < CEMInGT/2-9),
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Taking sufficiently many terms in the expansions gives approximations of any de-
sired algebraic order of convergence in ¢ in any desired Sobolev space (provided g is
sufficiently regular).

It is also possible to use the asymptotic expansion to derive estimates in function
spaces other than H®. Thus for example, we show at the end of § 5 that

||¢||Wg° < C{min(0,2—s),

and, in particular, that ||@|lwz is uniformly bounded. Note that this is a better
estimate than we would get applying the Sobolev Embedding Theorem directly to the
estimates for ¢ in H®. It is also easy to show that

lw = wollze < CE2,  ||¢ = dollze < CF2,

but ¢ does not in general converge in L>®°(2).

The Reissner-Mindlin model is discussed in many places (under various names),
although not very much attention has been devoted to the boundary layer behavior.
The existence of a boundary layer is noted in [6, Chaps. 8.9-8.10] and [11, Chap. 3.5].
Assiff and Yen [2] also note the existence of a boundary layer, and use separation of
variable techniques to compute the exact solution to the equations on a circular plate
with a special load. This calculation exhibits the boundary layer, and may be taken
as an example of our theory. Héggblad and Bathe recently studied the boundary
layer in more general situations via formal techniques and numerical experiments in
[7). They also consider the effect of corners, which is not treated here. In [6],
[11], and [7], the authors emphasize a reformulation of the Reissner—Mindlin system
consisting of a biharmonic equation for w (with different right-hand side than (1.4)),
and a singularly perturbed Laplacian for rot ¢p. These equations are coupled through
somewhat complicated boundary conditions, however, and we have preferred not to
use them. As far as we know, the explicit form of the asymptotic expansions and error
bounds for them are new.

2. Notation and preliminaries. The letter C' denotes a generic constant, not
necessarily the same in each occurrence. We assume that €2 is a smooth, bounded, and
simply-connected domain in R2. The L2(Q2) and L%(85) inner products are denoted by
(-, ) and (-, -) respectively. We shall use the usual L2-based Sobolev spaces H*(Q2)
and H*(0RQ), s € R, with norms denoted by || - ||s and | - |s. The reader is referred to
[8] for precise definitions of these spaces and their properties, of which we recall only
a few here. For s > 0, H~® may be identified with the dual of H 8, the closure of C§°
in H®. If s > 0, n > ¢ > 0 are real numbers, then the interpolation inequality

(2.1) lgliz+: < Cliglls ™" llgllisn

holds. If g € L?(Q) and A™! g denotes the unique function in H2(Q2) N H!(Q) whose
Laplacian is equal to g, then

CH AT gllsra < llglls S CIAT gllssa, 520,
where the constant C' may depend on s and 2, but not on g. In other words, g —

| A" g||s+2 defines an equivalent norm on H*(Q) for s > 0. This is also true for
s = —1, but slightly different negative norms are needed to extend this shift theorem
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to other negative values. We define ||g||ls = || A~ g||s+2 for g € L?() and all real s.

Then ||| - |||s is equivalent to the ordinary Sobolev norm || - ||s for s > 0 and s = —1.
For s = —2, ||| - |||s is equivalent to the norm in the dual space of H2(Q) N H(£2). The
norm || - ||| can be identified for other values of s as well, but this is not necessary for

our purposes. From (2.1) we have

llglls+i < Cllighls~* Ngll3+n,

valid for all real s > —2, n > ¢ > 0. We shall make frequent use of this fact to bound
sums of the form Y7 t¥||g|lls+: by a multiple of the sum of the first and last terms.

We also require the quotient space H*(2)/R. An element p € H*(Q)/R is a coset
consisting of all functions in H*(Q2) differing from a fixed function by a constant. The
quotient norm is given by

lolls/r = min llglls-

In fact, ||pllsyr = ||lpolls where po is the unique function in the coset p having mean
value zero.

We use boldface type to denote 2-vector-valued functions, operators whose values
are vector-valued functions, and spaces of vector-valued functions. Script type is used
in a similar way for 2 X 2-matrix objects. Thus, for example, divyy € L%(Q) for

P € HY(Q), while divT € L%() for 7 € H'(Q). Finally, we use various standard
differential operators:

(/om0
gradr = (ar/c‘)y)’ divep = 97 + oy

div (tu t12> — (6t11/8x + 8t12/8y)
to1 a2 8t21/3.’1) + 8t22/6y ’

_ (~oelow _ O O
curlp—( 8p/8x)’ rot i = By B

Note that these differential operators annihilate constants, and consequently induce
operators on the quotient space H*(2)/R for each s. We denote the induced operator
in the same way as the original. Thus, for example, if p € H!(Q)/R, curlp denotes
the element of L? obtained by applying the curl to any element in the coset p.

In our analysis, we rely on an equivalent formulation of the Reissner-Mindlin
plate equations, suggested by Brezzi and Fortin [3]. This formulation is derived by
using the Helmholtz theorem to decompose the scaled transverse shear stress vector:

(2.2) ¢:= X "%(gradw — ¢) = gradr + curlp, re H'(Q), pe HY(Q)/R.

Setting ¢ = £ 2/, one finds

(2.3) —Ar=gyg,
(2.4) —div C&(¢) — curlp = gradr,
(2.5) —rotp+t2Ap=0,

(2.6) —Aw=-divp—t2Ar,
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with the boundary conditions

(2.7 r=0, ¢ =0, B
Note that r satisfies a Dirichlet problem for Poisson’s equation, which decouples from
the other three equations. Once r has been determined, ¢ and p may be computed
from (2.4) and (2.5) and their boundary conditions, and then w is determined by
a second Dirichlet problem for Poisson’s equation. Thus all the difficulties of the
problem have been concentrated in the system (2.4)—(2.5) for ¢ and p. When t = 0,
this system of partial differential equations is very similar to the Stokes equations. For
positive ¢, these two equations represent a singularly perturbed Stokes-like system.

It is easy to check that this reformulation is equivalent to the usual Reissner—
Mindlin formulation (cf. [3] or [1]). That is, if (w,¢) € H}(Q) x H(£) solves (1.1)-
(1.3) and (r,p) € H' () x H'()/R are defined (uniquely) by (2.2), then (2.3)~(2.7)
are satisfied, and, conversely, if (w,®,p,r) € H*(Q) x HY(Q) x H(Q)/R x H}(Q)
solves (2.3)—(2.7) then (1.1)—(1.3) hold.

To describe the boundary layer for the Reissner—-Mindlin plate, we shall employ
the standard technique of making a change of variable in a neighborhood of the bound-
ary. Let (X(8),Y(6)), 6 € [0,L), be a parametrization of 9 by arclength, and let Qo
be a normal tubular neighborhood of 8Q in Q. Then, for each point z = (z,y) € Qo
there is a unique nearest point zg € 9. Let 0 denote the arclength parameter, with
counterclockwise orientation, corresponding to zg and p = |z — 2¢| the distance from
the point z to the boundary. Since g is a tubular neighborhood of 912, the corre-
spondence (z,y) — (p, ) is a diffeomorphism between €y and (0, pg) x R/L for some
po > 0. Explicitly, z = X(0) — pY'(8), y = Y(8) + pX'(#). A simple computation
shows that the Jacobian of the transformatlon from (z,y) coordinates to (p,8) coor-
dinates on € is given by 1 — k(0)p, where k denotes the curvature of 9. With these
definitions, the unit outward normal and counterclockwise unit tangent vectors are
given by

n=-—gradp= —curlf, s=gradf=—curlp on9N.

We use tildes to denote the corresponding change of variables for functions, i.e.,

F(p,0) = f(z,y).

We shall also use the stretched variable p = p/t. Circumflexes denote the correspond-
ing change of variables

f(p’ ) "f(p’a) f(xay)

3. An asymptotic expansion of the solution. We now turn to the construc-
tion of an asymptotic expansion with respect to the scaled thickness t = £/ VX of the
solution of the Reissner—Mindlin clamped plate model using the formulation given in
(2.3)-(2.7). Clearly r does not depend on t, so we begin, in this section, with the
expansion of ¢ and p. In § 6 we consider the expansion of w and the shear stress.

Our immediate goal is to develop approximations of ¢ and p by sums of the form

d(z,y) ~ ¢' (z,9) + % (z,y) := Y _ t'di(a,9) + £*X(p) D '®:i(p,0),

=0 =0

p(z,y) ~ p'(z,y) + p®(z,y) : thz z,y) + t%(p) Zt’P(p,
=0 =0
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where x(p) is a smooth cutoff function which is identically one for 0 < p < po/3
and which is identically zero for p > 2po/3. (The power of ¢ multlplymg the second
sum in each expansion was chosen in anticipation of the results that follow.) In this
section we shall calculate formally in order to motivate appropriate definitions of the
interior expansion functions ¢; and p;, and the boundary correctors &; and P;. In the
next section we derive some estimates for these functions, and in § 5 we give rigorous
bounds for the errors in the asymptotic expansions.
Now ¢ € HY(2) and p € H'(2)/R are uniquely determined by the equations

—divC&(¢) —curlp=gradr inQ,
—rot¢p+t2Ap=0 (mod R) inQ,

p=0, 2

s 0 on 0.

In writing the second equation modulo R we mean that ¢ and p are to be determined
with —rot ¢ +t2 A p equal to an unspecified constant function. In fact if we integrate
this equation using the divergence theorem, it follows that if ¢ and p also satisfy the
boundary conditions, then the constant must vanish. Thus, although the equation
modulo R is formally weaker than (2.5), in fact together with the other equation
and the boundary conditions, we have an equivalent problem to (2.4), (2.5), (2.7).
The reason for introducing this complication is that it is more convenient to define
an asymptotic expansion that satisfies the second equation only up to an additive
constant.
Formally, (¢!, p’) will be determined such that

(3.1) —div C&(¢') — curlp! =gradr inQ,
(3.2) —rot ¢! +t2Ap! =0 (mod R) inQ,
(3.3) ¢! =—-¢P onoQ,

and (@7, p?) will be determined such that

(3.4) —divCE(¢P) —curlpP =0 inQ,

(3.5) —rot¢p? +12ApP =0 inQ,
opP _ op!

(3.6) = " on on 0.

Inserting the series expansions for ¢!, p!, and ¢? in the first boundary value
problem and equating coefficients of corresponding powers of ¢, we obtain the boundary
value problems defining the interior expansion functions ¢; and p;:

. gradr fori=0,
3.7 - i) — 1p; =
(3.7) aiv CE(@) - curtp = { &7 0
0 d R fori=0,1,
(3.8) —rot ¢ = { (mod R) ore
~Api_s (mod R) fori>2,

and the boundary conditions
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(3.9) é 0 for:=0,1,
’ t —Q,’_z for ¢ 2 2.

In fact, (3.8) can be replaced by the simpler equation
(3.10) rot ¢; =0 (mod R).
To see this, apply rot to (3.7). Using simple calculus identities, we get that

E

—mAfOt(ﬁ;‘ +Ap, =0.

It then follows from (3.8) that Ap; =0 for ¢ = 0,1 and, for ¢ > 2,

E 2
Ap; = A +0) A% pi—s.
By induction, Ap; = 0 for all . We thus use the system (3.7), (3.10), (3.9) to define
the interior expansion functions. This system is essentially the Stokes equations and
admits a unique solution in H(f2) x L?(2)/R (see Lemma 4.2 below). Note that
the implied constant in (3.10) is uniquely determined by compatibility between this
equation and the boundary conditions in (3.9). We also remark that the right-hand
side of all three equations vanishes for i = 1, so ¢; = 0 and p; = 0.

To obtain the defining equations for the boundary correctors, we transform the
system (3.4)—(3.6) to p-6 coordinates. The equation for ¢P and p2 corresponding to
(34) is

62¢B
6 2

32 ¢B
Op0o

a¢B - 32653
ap + A3 56°

B opP op®
p + 4555

(3.11) .Ao +.A1 +.A2 +.A46 +A5 =0,

where

_p [ (=) + (1 =v)(py)?/2 (1+v)pspy/2 )

( (1+ V)pa:py/2 (py)2 +(1=v)(pz)?/2
-D ( 29@% = V)lypy  (1+v)(Oyps + ezpy)/2)
(1+v) sz +0zpy)/2  20ypy + (1 —v)0zpz ’

=-D pzm+(1-'/pyy/2 (1+V)pa:y/2 )’

1 + V)Pa:y/2 Pyy + (1 - V)Pa:a:/2

(02)% + (1 —v)(8,)2/2 (1+ v)0,6,/2 )
1 + V)00, /2 (8y)2 + (1 — v)(85)2/2

_ Ozz + (1 — v)0yy /2 (1+v)05y/2
As=-D ( (1 + )0y /2 Oyy + (1 — u)om/z)

As = —curlp, Ag= —curlb.

-D

Note that
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In p-6 coordinates (3.5) becomes

- 3¢B ~ 8¢ 5 (0?98 opB 0%*pP op
(3.12) As - ap — Ag- + 1 (8/)2 +A7 op +A 262 +A9 60) 0,

where
A7 =Ap, Ag=|gradf|?, Ag=AS.

In deriving (3.12), we use the facts that |grad p| =1 and gradp-gradf = 0. The
boundary condition (3.6) becomes

9" _ opt
(3.13) % ~ on on 9N.

The exact form of the coefficient functions in (3.11) and (3.12) is not essential.
However, the coefficients Ay and Az have some properties which will prove important.

LEMMA 3.1. The matriz-valued function Ay(p,0) and the vector-valued function
As(p,0) are independent of p. Moreover for each fized 0, Ao is symmetric negative
definite and As is a unit eigenvector of Ay with eigenvalue —D(1 — v) /2.

Proof. That these coefficients are independent of p follows from the observation

that 8p/dz and 8p/dy depend on 6 but not on p. The second sentence is easily verified
using the fact that |gradp| =1. [

The remaining coefficients are in general functions of both p and 6 and to obtain
the boundary layer equations, we expand them in Taylor series about p = 0. That is,
we define operators A () by the formal Taylor series expansions:

Ai(p,0) = Z”’A’(m, i=1,2,3,4

0

and define A{; and fi{ , © =1,8,9, similarly. Formally inserting these expansions in
(3.11) and at the same time making the change of variable p = tp gives

24 B 2 B ~B
—2A086?2 4471 [A°a¢ A°8¢ + 4,9 ]
D

9po8 Tt 8p dp
A' a ¢ . 6¢B
J j+1 i+199
(3.14) + ;_.Ot [ .(.A 3700 + Aj 8ﬁ)
o2 (4280 097y 97|
,(Aa 50 + A 20 + AL 50 J—O.
Similarly (3.12) becomes:
(3.15)
84’ a¢B 32I3B
-1 0
As - 9% - AS. 55+ o7

P 8(35 p’ opP . 9%pB 0p
i+l g+l j j
+ E (J 1)|A 20 ]. (A., % +tAl— 567 +tA) 89) =0.
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We now calculate the differential equations determining the boundary correctors
by inserting the series expansions for ¢? and p? (defined at the beginning of this
section) in (3.14) and (3.15) and equating coefficients of corresponding powers of ¢.
Neglecting the cutoff function x, we obtain from (3.14) the equations

1 32&0 BPO
Ao af)2 A5 aﬁ = Oa
; 0%y, aﬁ P b oP,
Ao 3;321 + Ay + Al pran T Mg, ALy =0
and, for i = 2,3,-
A a2§' 615 Oazéi—l 20 643,-_1 - 0313'_.1
.AO 6ﬁ2 +A5 a* Al aAao +A2 ,, +A6 60
i—2 N
ﬁ_ J+13 ¢ i—2—j ]+la§£—2—1 2j+1 3P~_2__]-
* j;o [(] +1)! (Al 0po0 +4 ap + A 90
p’ J 0 45 i—2—j J a¢1—2-—] _
il (A‘* T | Rk

Introducing the convention &, =0, P, = 0 for i < 0, we may write these three
equations as

(3.16) Ao %’Z As‘} _E(3,6), ieN,
where
/’i .16 «p,_ 1-j AJ 3Qt—1—-1 Ja ¢ i—2—j
E(p,0) = ]z_% (’4 a0 T TATop
Ob;_5_; )
,1 i—2—j J L4 J
Similarly, from (3.15), we obtain
(3.17)
. 0d; 9P,
_AS'a_ﬁ a,@ G(p’o) =
-1 .4
P i 0B OP;_1_; P OP;_,_;
- | =-A. J ¥ Bl ol J J J J
Zj!(AG A T - R a7 )

ieN.

Inserting the asymptotic expansions for p! and p? in (3.13), changing variables
from p to p, and matching powers, we obtain the boundary conditions

oP, _ op ,
(3.18) a—ﬁ(O, 0) = 5';;(0, 0), i €N.
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Finally, in order to determine the boundary correctors uniquely, we also impose
the conditions at infinity

(3.19) lim &;(5,0) =0, lLim P;(p,0) = 0.
p—00 p—00

We remark that (3.17) is to be satisfied exactly, rather than up to an additive constant
(as was (3 10)). Similarly, because of the boundary condition at infinity, we have
specified P completely, not just up to an additive constant as was the case for p;. Once
the boundary correctors Qk and Pk for k < ¢ and the interior expansion function p; are
known, we may view (3.16)—(3.19) as a boundary value problem in ordinary differential
equations in which the independent variable is p, the unknowns are &; and Pi, and
0 plays the role of a parameter. As we shall see (in Theorem 3.3), this problem has
a unique solution. Therefore we can recursively determine all the interior expansion
functions and boundary correctors as follows. First we determine (¢, po) by (3.7),
(3.10), and (3.9). Then we determine (Do, Py) by (3.16)—(3.19) (the right-hand sides
of (3.16) and (3.17) being zero and the right-hand side of (3.18) being known). Then
(¢1,p1) is uniquely determined by (3.7), (3.10), and (3.9), and so forth. Thus we have
proved the following theorem.

THEOREM 3.2. There ezist functions ¢i(x,y), pi(x,y) on Q and $;(p,0), P;(p,0)
on Qo, t € N, unique except that p; is determined only up to an additive constant,
which satisfy the boundary value problems (3.7), (3.10), (3.9) and (3.16)—(3.19).

The Stokes-like boundary value problem (3.7), (3.10), (3.9) is well posed, but,
of course, we cannot in general determine its solution in closed form, even if r were
known in closed form. (However, the regularity of solutions to this problem is well
understood—cf. Lemma 4.2.) The system (3.16)-(3.19) can, in principle, be solved in
closed form. For example, the solution for ¢ = 0 is

(3200  By(p6) = —;%1“9(0 6)e=b,  Bo(p,6) = A5(0)a”° (0,60)e™,

where ¢ = [24(1 4 v)/E]}/2. (We show that this is the only solution in the proof of
Theorem 3.3.)
The following theorem gives the form of the solution for general i. In particular,
it states that &; and P, are polynomials in p times the decaying exponential e,
THEOREM 3.3. For each i € N, the system (3.16)—(3.19) has a unique solution
(@i,f%). Moreover there exist smooth functions oujki(0) and oijxi(0) depending only
on i, the domain 2, and the plate constants E and v such that

i ]
N . o Bp
~ _ - . Ak Py
®D,(p,0) =e kz=0 jz=0 ;=0 aigkl(o p 900 (0 9),
i 4 =]
. s 9 op;
Pi(p, 0) =e E E E aijkl(o)pk 801 p] (0 0)

k=03j=0 =0

The proof, an exercise in ordinary differential equations based on the form of the
coefficients of (3.16)—(3.17) as given in Lemma 3.1, is given in the Appendix.

This completes the construction of the interior and boundary layer asymptotic
expansions. In the next section we bound the individual terms of the series and
determine how nearly the finite sums satisfy the differential systems which motivated

their definitions. Then, in § 5, we prove error bounds for the finite sums of the
expansions.
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4. A priori estimates. We begin this section by deriving a priori bounds on
the boundary correctors using Theorem 3.3.

THEOREM 4.1 (A PRIORI ESTIMATES FOR BOUNDARY CORRECTORS). Let i be a
nonnegative integer. There exists a constant C depending only on the domain 2, the
elastic constants E and v, and s and i, such that

|§ils +|Pils < , sSER,

s+i—j

1®:lla.20 + [ Pillo0p < CH/2~° Z Z t"

3j=0m=0

ap] , s€N.

m+i—j

Proof. The first estimate follows from Theorem 3.3 by setting / = 0 and using the
triangle inequality. We now consider the second inequality. To establish the bound
for ®;, we change to (p,6) coordinates and seek bounds on the integrals

(4.1)

L o ) 1/2
/ / |8°~™+k B, 10p°~™ 00" 2|1 — K(8)p| dpdﬁ] , 0<m<s, 0<k<m.
0Jo

Now ®; is a sum of terms of the form

(4.2)

(0) exp(—cp/t)F(pt) s OB

05 (0 0), a smooth, f polynomial, j <i,1<i—j.

The L?(p) norm of (4.2) is bounded by Ct/?|dp;/dn|;, since

/ " |exp(—cp/t)f(p/t)|>dp < t / ” |exp(—cp) f(p)|* dp.
0 0

Applying 8°~™+% /9p*~™80* to (4.2) gives t™° times a sum of terms of the same
form except that I may be as large as i — j + k < m + ¢ —j. Thus (4.1) is bounded

by Ct1/? Z]_O tm“slapj/anlm.,.,_] Summing over m = 0,1,--- ,s gives the desired
bound for @;, and that for P; is proved identically. 0

We next summarize the basic regularity properties of the Stokes-like system which
defines the interior expansion functions.

LEMMA 4.2. Lets €N, f € H*(Q)NHY(Q), g € H*(Q)/R, and l € H**1/2(60)

be given. Then there erist unique ¥ € H*t1(Q), ¢ € H*()/R satisfying the partial
differential equations

(4.3) —div C&(¢) — curlg = grad f,
(4.4) —rot e =g (mod R),

and the boundary conditions

Y=L
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Moreover, there exists a constant C depending only on s, E, v, and Q such that

llls+1 + llglls/m < CUIflls + glls/m + 1ear1/2)-

Remarks. 1. The restriction that the forcing function in (4.3) be the gradient of
an H(Q) function is sufficient for our purposes and allows us to avoid some technical
points concerning duals of Sobolev spaces and trace operators with values in negative
order spaces. 2. If we replace div C £(2p) with A then the simple change of variables
(¥1,v%2) — (Y2, —1) converts (4.3), (4.4) to a generalized Stokes system, and this
result is well known [5]. Here we give a proof which works for general C based on
regularity results for the biharmonic.

Proof. Written in weak form, the boundary value problem is to find ¢ € H!(Q)
such that ¢ = I on 89 and q € L%(Q)/R satisifying

(CE(QP),S(“)) - (qa rot l"') = —(f’ div “’)
— (rot 9,v) = (g,v)

for all p € H*(Q) and all v € L2(R) of mean value zero. Existence and uniqueness of
a solution in H1(2) x L2(Q2)/R is proved just as for the generalized Stokes equations,
e.g., by applying Brezzi’s theorem [4]. The estimate for s = 0 follows from the same
argument. To establish the estimate with s > 1, we apply the Helmholtz decomposi-

tion to 1 to get ¢ = grad z + curlb, with z € H(Q), b € H'(Q)/R. From (4.4) we
get

Ab=g (modR) inQ,
with boundary conditions 8b/0n = 1 - s. Taking the divergence of equation (4.3) gives

—DA?z=Af inQ,

with boundary conditions z = 0, 9z/8n =l - n + 8b/Js. Applying regularity results
for the biharmonic problem and the Laplacian, we obtain

blls+2/r < Cllglls/r + +1ss1/2),
lzlls+2 < CUI A flls—2 + [Us41/2 + |0b/08|s41/2)
S CUFlls + Uss1/2 + N1blls+2/R)
SCUFlls + Ustr/2 + llglls/m)-

The bound for 9 now follows directly by the triangle inequality and the bound for ¢
then follows from (4.3). [

We now use the previous two theorems to obtain estimates for the interior expan-
sion functions.

THEOREM 4.3 (A PRIORI ESTIMATES FOR INTERIOR EXPANSION FUNCTIONS). Let

&; and p; be the interior expansion functions. Then for all s > 0 and i € N, there
exists a constant C such that

pills+1 + lIpills/m < Clligllls+i--
Proof. Since — Ar = g and r vanishes on 952, we have

(4.5) Irlls < Cllglls—2-
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Thus, it suffices to prove that

(4.6) @ills+1 + 1Pills/r < Cllrlls+s-

We prove this first for s € N by induction on 7. For i = 0, we get this immediately
from the defining equations (3.7), (3.10), (3.9), and Lemma 4.2. As already noted
¢1 = p1 = 0, 50 (4.6) holds for i = 1 also. For ¢ > 2, we apply Lemma 4.2, Theorem 4.1,
and the trace theorem to obtain

3p,

”¢t”3+1 + ”pz”s/n < Cl¢z—2|s+1/2 < CZ 3n

8§—3/2+i—j

i—2
<C Z Ipjlls+i—j-
=0

Application of the inductive hypothesis completes the proof of (4.6) for integer s. The
proof for noninteger s now follows by a standard interpolation argument. ]
COROLLARY 4.4. For s > —-g- and i € N, there exists a constant C such that

opi
0s |,

Op;
+ 6_113

+ |®ils + |Pils < Cllglllsti=1/2-

Proof. Asremarked in the previous section, p; is harmonic for all i. Consequently,
the trace inequality
opi| , |9pi

Es—s on

holds for all s, so the bounds on p; follow easily from the theorem. The bounds on ®;
and P; then follow from Theorem 4.1. 0

We now combine Theorems 4.1 and 4.3 to obtain an essential result for the deriva-
tion of error bounds for the boundary layer expansion.

THEOREM 4.5 (A PRIORI ESTIMATES FOR BOUNDARY CORRECTORS). Let i, k,
l, n, and s be nonnegative integers and define functions f and f on g by

. I+n _ - I+n
F= (%)ktl%d"” f= (;‘)) ailaon i

< Cllpills+3/2/r

8

Then there exists a constant C depending only on the domain Q, the elastic constants
E andv, and i, k, 1, n, and s, such that

I£lls.020 + 1 flls,00 < CE2*Nglli+n—1/2 + ¢/ *lgll+i+n—172)-

Proof. Note that, if in (4.2) we differentiate with respect to p (i.e., differentiate
with respect to p and multiply by t), we obtain something of the same form. The
same is true if we multiply by p. If we differentiate with respect to 6 we obtain a sum
of two terms of the same form, with one higher order of differentiation on dp;/dn.
Hence, reasoning just as in the proof of Theorem 4.1, we obtain

_ 0o
1 llegio + 1 Fllee < CF2 ZZ”" =

j=0m=0

m+i+n-—j

An application of Corollary 4.4 completes the proof. 0
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We now consider the partial sums given by

¢{n(xa y) = Zti¢i(xa y)a an(z,y) = ztipi(xay)a
=0

=0

o5 (x,y) = 2%(p) Y_t'®:(5,0), ph(z,y) =tx(p) D t'Pi(p,0).
=0 =0

Note that while #; and P; are only defined on the tubular neighborhood ¢ of 91,
¢Z and pE are defined on all of Q because of the cutoff function x. By construction,
(¢l,,pk,) and (¢Z,pE) should almost satisfy the boundary value problems (3.1)—(3.3)
and (3.4)—(3.6), respectively. We now make precise to what extent this is true.

For the interior expansion this is easy. The following theorem follows directly
from (3.7), (3.10), (3.9).

THEOREM 4.6 (BOUNDARY VALUE PROBLEM FOR THE INTERIOR EXPANSION).

Let m € N. The finite interior expansion (L ,pl) € H*(Q) x H'(Q)/R satisfies the
boundary value problem

—div CE(¢L) — curlp!, = gradr in Q,
—rotpl +t2Apl, =0 (mod R) in Q,
b = —Pm_y  on ON.

For the boundary expansion, it follows from (3.18) that the boundary condition

) B I
4.7 PPm _ P

on on
is satisfied exactly, but for the differential equations the situation is more complicated.
Define the residuals R,, and R,, by the equations:

(4.8) —div CE(¢2) — curlp? = R,, inQ,
(4.9) —rot 2 +t2ApB = R,, in Q.

The following theorem shows that these residuals are indeed of high order with respect
to t.

THEOREM 4.7 (BOUNDARY VALUE PROBLEM FOR THE BOUNDARY LAYER EXPAN-
SION). Let m € N. The finite boundary layer expansion (¢2,p2) € H(Q) x H(Q)

m

satisfies the boundary value problem (4.7)—(4.9), with the following bounds valid for
the forcing functions Ry,, R.;:

”R"l"s < C(tm+3/2—8"g”m+l/2 + tm+5/2”g”m+s+3/2)a §= _1a0a ]
IBmlls < C(tm+5/2—8"9"m+1/2 + tm+7/2"g"m+s+3/2)a seN.

Proof. It suffices to prove the theorem with the right-hand sides replaced by
s+1 s+1

Ct™¥32=2 N " ¥l gllmt1/244 and CE™¥/272 N " gl 117244,

=0 =0
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respectively. In addition to the portion of the residual due to truncating the series
after finitely many terms, we must consider the contributions from two other sources,
namely the replacement of the coefficients by Taylor polynomial approximations and
the suppression of the cutoff function x. Because of the presence of the cutoff function
x in the definitions of @2 and pZ, it is easy to see that the residuals R,, and Ry, will
vanish for p > pp, i.e., in Q\ Qo. In Qp, after changing to (p,6) variables, we have
(cf. (3.11))

9  920B B 25 B B
R, =t24, ¢m+t- (Alaf” 1 i2%n )+A33¢ +A4‘9¢

8po0 dp 0902
1A Bp 8pB - X X
1 m ZPm o __ 1 2

+t7 1A o5 + Ag 50 = x(p) Ry, + Ry,

where

o4 OB 4 9P
Zt (AO a,\2 ap)

=0

m+1 2 o

i 92d;_, ob;,_y . 0®; b _, OP;_,
+§t (.A1 500 Az % + As 902 A4 20 +A6 28
82 Q Bib

m+2

+1 (.A 567 + A, 20 ),
m+1 345 .
%' (p) [g ¢ (2A0 L A5P) + § t ( 55 +A2¢i_l)}
ill(p) Z tiAOSApi’

=0

and we have again used the convention that terms with negative indices vanish. Now
for any k£ > —1

A(p,6) = Z 0K (0) + P (p,0)

j=0J
where ey a 3)’°
AEF1(p,0) = { /0 Fracy (sp,0) ds, k=0,
Ai(p,0), k=-—1.

The other coefficients admit similar Taylor expansions (except for Ao and As which
are functions of 6 only). Substituting these expansions for k = m —¢ and using p = tp,
we get

. mo . 0%, s (tp)a 2d;_y .08,
R, =>t (Ao - >+Zt’ Al A —
i=0 9 i=0  j=0 0p06 op

9?d;_,

AJ
90?

0d;_, oP;_,
AJ 1 AJ 21
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m+1
: . 45, 645,
+ Z tz(tﬁ)m—t+1 (Am-—t+1 aa 891 +Am i+1 ap 1

=0

+ .Zgl—i+162¢i— +Am z+la§ +Am—z+lap— )

06? o0 06
+ ™2 (A O, +A 0% )
3 4

90? 00

i 845—11 .7845—]1
—gt[ aﬁ2+A5aA Z (1 9500 T2

8@- 2 645_ _2 8P_ -1
.7—-7 A7 Jj— J J—
+ A3 56 + Ay 20 +A 50 )]

m+1 S
02, o0D;_,

m+1 ~m—i+1 m—i+1 4 Am—i+1Z 1
+t Z (A 5700 Ly AT 55

; 0 . O
m+2 m m
+1 (.As 202 + Ay 20 ),
where we have used the identity Y%, 372 T F(,5) =Y, Z o F(i—13,7) to obtain

the second equality. Now the term in brackets vanishes by constructlon (cf. (3.16)).
Thus

m+1 % 2
s 0%, a . OP;_
— gm+1 am—i+1 m—t+1 i—1 m—i+1 i—1
3 ( Pty g2

=0

ININIOY, 7 TIPS, " PSS ] i
m—i+1 1—2 m—i+1 1—2 m—i+1YLi-1
+ A3 arT + Aj 50 + Ag 50 )
. 0%d,, od,
m+2
* (A 6° + A5 )
or
i 0%d _ 0%®_iy
— ym+1 A m—j , £i0Pm—j % j
¢ sz,( 15560 + A + A e
(4.10) s OB oP,, 92d,, O,
J m—j—1 j9im—j-1
+ A= A A=t + Ay
A similar computation gives R,n = %(p)RL, + R2,, where
m— oP,,_ 2P,
— gm+2 AJ J +A‘7 d J +A] Jj—1
LE_:O"' ( 0p 96°

OPrm_j_1 B, 0Py,
+A] Mot A + A
00 ) ( 00> T 090 )]
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and

m > m+1 m
=X'(p) [tzt‘ ( Asd; +2%—P—) +ty th_ } +X'(p)tY P

=0 =0 =0

It suffices to show that the desired bounds are satisfied by each of the terms R.,, RZ,,
R}, and R2,. The bounds on ||RL,||s and ||R},||s, s > 0, follow from the expressions
for the residuals just computed and Theorem 4.5.

We next bound || R2,||, and ||R2,||s, s > 0. Using the expressions for &; and P;
given in Theorem 3.3, we can write R2, and R2, as a sum of terms all with a common
factor of e=°?. Now, because of the presence of the factors ¥’ and X" in the definitions
of R2, and R2,, each of these terms vanishes for p < po/3. On the region where
p2 Po/ 3

e ? < K; (cgo) I ) =: C;t!

with K; := max;>o z¥e™® < oo, for any desired power j. Using this result, referring
to the expressions given in Theorem 3.3, and applying Corollary 4.4, it is not difficult
to show that for any j and suitable C

(4.11) "Rgnlls < Ctj||9||m+s+1/2a ||R3n||s < Ctj”g"m+s—l/2-

Finally, we establish the first estimate when s = —1. First we note that

A

1 .; s
Al = F.A{ + tf).A‘i-’-l.
Substituting this and analogous expressions for ./i%, .Z?,, .Zf;, and ;1{5 in (4.10) we get
R, =Ry, + R+ R,

where

1l __ ym+1 - P_’ Jaé"‘ -3 Ja‘ism—j
R =t > (Al 5560 + A 35

52D, _ 1 645 —j—1 aP_ _1
J J J Jj— J Jj—
+A—60 +A 20 +A 50 )],

L
R12 tm+2.A m’
" 007
and
. LA 82, _ 0d,,_ 82d,, _
13 _ ym+2 ~j+1 j+1Y Fm—j 17+1 m—j 1i+1 j—1
R3 =t ]z:%p’ (A 5500 + A 55 + A o
(4.12)

ob,,_ OP,,_ . 0
4i+19F m—j—-1 J+1 Jj—1 Fm
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By (3.16)
A 3?1 o OPpiy
R:'r:' = —tm+1 (A a:";-‘- +A5 6"; ) 9
or

. . 0P oP,
11 _ _ym+2 m+1 m+1
Rl = —¢ (Aot 37 + Ag 3p )

Therefore, for any ¥ € H(Q),
(4.13)

(xR, )
b2 / / ( “‘mﬂ + 4,28 m“)w(p, O)[1 — x(8)p] dpde

S N Y N N
= gm+2 /0 /0 (Aota—pMstH)a—p{x(p)zp(p,o)u—n(o)p]} dpds.

Applying the Schwarz inequality and Theorem 4.5 gives

(4.14) (xR, %) < C™ 52 Ig|lms12l19 1

or, since 1 was arbitrary,
xR ll—1 < Ct™52|Ig|lm1/2-

Similarly,

L rpo
ocriz, ) =em [ 5
0J0

=2 | L/O " ) Asage 2 {0,011 = x(0)s1} doa,

0)[1 ~ r(0)p] dpdd

whence
xR (-1 < Ct™ 52|\ gl ms1/2-

Finally, applying Theorem 4.5 directly to (4.12) and (4.11), respectively, we get
IXRN-1 < ClIRNlo < CE™ ¥ 2lgllm 112,

and
|1 RZ,|l-1 < |R2,llo < Ct™%/2||g||m41/2-

Since R, = xR + xR1? + xR!3 + R2 , the last three equations imply

|Rmll-1 < Ct"‘+5/2l|g||m+1/2,

as desired. 0
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5. Error estimates. Let
PE=¢- ol -0E,
=¢—[¢o+td1+ -+t @y + x(t2Bo + 3B, + - - - + t" D, _5)),
pE=p-pl-p2,
=p—[po+tpr+-++ "y + x(tPo + 2Py + -+ + t" 1P, )]

Thus ¢Z and pE denote the errors in the asymptotic expansions up to order roughly
n. Since ¢y and p; vanish,

S =9¢F =¢p— o, p§=pF=p-po.

In this section we derive rigorous error bounds for ¢Z and pF. In Theorem 5.1 we
bound the error in H(2) x L2(2)/R and in Theorem 5.2 we bound the error in higher
order Sobolev norms.

THEOREM 5.1 (ERROR ESTIMATES FOR ¢ AND p IN ENERGY NORM). There
exists a constant C independent of t such that

I6F 11 + I llojm + tll gradpfllo < Ct*/2|igll-1/2
and forn > 2
% llx + lIpllo/m + tll gradprllo < C(E™+?lglln—s/2 + t***/2llglln-1/2)-

Proof. Tt follows easily from (2.4), (2.5), (2.7), Theorem 4.6, and (4.7)—(4.9) that
(¢E, pF) satisfy the partial differential equations

(5.1) —div C&(¢Z) — curlpf = -R,,_,
(5.2) —rot ¢F + 2 Ap? = —R,,_» (mod R),

and the boundary conditions

E Op: _10Pn—1 Opn
= In _ _yn-1Z0n=ml m TR
(5.3) o, =0, 5 t 3 t o

Writing these equations variationally, we get for all ¥ € H 1(Q) and ¢ € L%() with
mean value zero,

(5.4) (CE(PE),E()) — (curlpy, ) = —(Rn-2,%),
(¢f, curlq) + tz(gradpf, gradq) = (Rn—-2,9) — t"+1(6pn_1/6n + tOpy, [On, q).
Now let 1
P =rf o [ E s

denote the difference between pZ and its mean value. Choosing ¥ = ¢Z and q = pZ
and adding the equations, we obtain

(CE(¢7),E(#n)) + t*(grad py , grad pr,)
= _(R'n,—Za ¢'§) + (Rn—2aﬁf) - tn+l<6pn—l/an + tapn/an,ﬁf)
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Applying Korn’s inequality and standard estimates, we thus obtain
li¢n I3 + || grad pr I3 < C(I| Rn—2ll-1ll¢% I + | Rn—2llollp% llo/m-
+ t**1(|8pn—1/8nlo + t|0pn /8no) Py lo)-

Now
1510 < ClIBE NP IPEI? < Ct~Y2|1pE |lojm + t+/2|| grad pZ||o),

so the last term in the previous estimate may be bounded by
Ct**1/2(18pp-1/8nlo + t|8pa—1/nlo)(lIpy llo/r + tll grad py llo)-
Now choose ¥ € H'(Q) satisfying

rot ¢ = 52, Il < C"Pf"O/W

(The existence of 1 follows from Lemma 4.2.) From the first variational equation, we
obtain
ez I5/m = (Pms 57)
= (CE(¢n), EW)) + (Rn—2,%)
< Clleliliez Il + 1 Ra-2ll-1),

and so
Ipgllo/r < C(lld2 11 + | Rn—2l-1).

Combining all these results and using the arithmetic-geometric mean inequality, we
obtain

loZ il + "Pf”o/n +t|| grad pf o
< O [ Racsllos + | Rucallo + £*/210pn s mlo + £7+/213p, /3l

Note that if n = 1, the right-hand side reduces to Ct3/2|8po/dn|o. The theorem
follows immediately from this estimate, Corollary 4.4, and Theorem 4.7. 0
We now turn to the derivation of error estimates in higher norms.

THEOREM 5.2 (ERROR ESTIMATES FOR ¢ AND p IN HIGHER NORMS). Let s > 2
be an integer. Then

67 lls + tlpTlle/m < CE2*ligll-1/2 + tllglls—2)

and for n > 2

oz lls + thplle/m < CE*2llglln—s/2 + "+l glln+s—2)-

Proof. By standard regularity results for the Dirichlet problem for plane elasticity
and (5.1),

(55)  llénlls < Clldiv CE(r)lls-2 < C(ll grad py ||s—2 + || Ra—2lls—2)-
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Using regularity for the Neumann problem for the Laplacian and (5.2) and (5.3), we
similarly obtain
s—3/2>

<cC (t"2|| rot 2|2 + t72||Rp—a||s—g + "1

E E 31’5
leXllem < O (I APT la-2/m + | 5

Opn—1
on

9pn

tn
+ on

s—3/2

3—3/2) .

Combining these results and using Corollary 4.4 and Theorem 4.7, we get for n > 1,
8§22,

o lls + tllpr lsym < C (II gradpy; [ls—2 + || Ro—2lls—2 + ¢ 7| ot 7 |ls—2

Opn

Opn—1
tn+1
+ on

on s—3/2 3—3/2)
< C(IpE o=1/m + 17 @7 oz + £33 g|l g2
+ "2 gllngamss2 + |G lnra—3 + 1| gllnrs—2)-

+t7Y|Rp—2||s—2 + t"

Since R_,, R_1, and p; vanish, for n = 1 we can simplify this result to

167 lls + tlpT lls/m < CUUIPT Ns-1/ + 7 HI1DF ls—1 + tliglls—2)-

Thus

loZ1ls + tlipE |ls/m
< { Clp¥Flls-1/r + t7H1¢F [lo=1 + tllglls—2), n=1,
T L CUIPENs—1/r + t 7 D8 |ls=1 + t"T3/27%||glln—3/2 + t" " ||gllnts—2), 7 >2.

For s = 2, the theorem follows from this relation and Theorem 5.1. We can complete
the proof using this relation and a simple induction on s. 0

As a consequence of Theorems 5.1, 5.2, and 4.3, we easily obtain bounds on ¢
and p.
THEOREM 5.3 (BOUNDS ON ¢ AND p).

lglls < CE**llgll-1/2 + tlglls—2 + llgllls—s),  s=1,2,--,
Iplla/m < CE**llgll-1/2 + llglls—2), s €N.
Proof. From Theorems 5.1 and 5.2 we have

I lls/m < CA2*Ngll-r/2 + llglls—2), s €N,

By Theorem 4.3,
Ipolls/r < Clligllls—2-
Applying the triangle inequality, we obtain

Iplls/r < 1P lle/m + Ipolls/m < CE2*llgll-1/2 + llglls—2)-
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A similar argument gives the estimate on ¢. 0

We may use the interpolation property of the Sobolev norms to obtain bounds
on ||¢E|; and ||pE||, for noninteger s similar to those given in Theorems 5.1 and 5.2
for integer s. In particular we have

%152 < CUlDE 2l (13) /2
< Cl(t2|lgll=1/2 + tllgllo) " *lIgll—1/2 + tligll1)]*/?
<C(lgll-1/2 + t3/2)|g]l1)

and, similarly,

IPEll3/2/r < CUUIPT|1/mlIPEl2/r)" 2
< ClE2||gll=1/2(t 72 llgll =12 + llgllo)]*/2
< C(llgll-1/2 + t*2l|gllo)-

Combining with Theorem 4.3 as above, we get

(5.6) llolls/2 < C(llgll-1/2 + t¥/2||gll1),
(6.7 Iplla/z/r < Cllgll-1/2 + t*ligllo)-

In general, however, higher norms of ¢ and p do not remain bounded as t — 0.

Thus far our estimates have all been in the L2-based Sobolev spaces H®. In
closing this section, we note that our asymptotic expansions and error estimates can
be used to study the dependence of the solution on ¢ in many other function spaces
as well, for example in the LP-based Sobolev spaces W, or the Holder spaces C™“.
To determine the behavior of the norm ||¢|lws, with respect to t, for example, we
may write ¢ = ¢F + ¢l + ¢p2_,. Now, assuming g is sufficiently smooth, ||¢pZ||,+3 /2
is bounded uniformly in ¢. Hence, if n is sufficiently large (n > s — % in this case),
then the Sobolev Embedding Theorem implies that ||¢Z||ws, is bounded uniformly.
Each of the interior expansion functions is bounded in all the H? spaces, so [[¢%(lws,
is also bounded uniformly. Thus the behavior of ¢ is determined by that of ¢2_, =
x(2Po+t3®, +- - -+t"P,,_5). Since we have quite explicit expressions for the boundary
correctors (Theorem 3.3), it is not difficult to determine the behavior of ¢2_,. We
see that [|¢Z ,llws, = O(t*~*). Thus

Ipllws, = O(=in2=29).

Estimates of other quantities, including the errors in the partial sums of the asymp-
totic expansions can be derived similarly. With a little effort we can get a bound
which indicates explicitly the dependence of the norm on the load function g as well.
However, we do not expect that the required regularity on g in these estimates (and
in some of the previous ones as well) is optimal.

6. Asymptotic expansion of the transverse displacement and shear. In
the previous sections we obtained and justified an asymptotic expansion for the ro-
tation variable ¢. We now turn to the other primitive variable, w, and obtain an
expansion for it. In contrast to ¢, we will see that w has no boundary layer.
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Define the auxiliary variable v = w — t2r. Clearly v = 0 on 89 and, from (2.6),
Av = diveg. Then, taking the divergence of (2.4) and substituting (2.3), we easily
compute that D A2v = D Adiv ¢ = g. Next, note that grad v = grad w—t2 gradr =
¢ + t% curlp. Since ¢ vanishes on 99,

Thus v is completely characterized as the solution of a certain Dirichlet problem for
the biharmonic operator, and it is easy to see how to expand it in powers of t. For
t € N, define v; by the biharmonic problem

0, 1=0,1,
v; =0, Ov;/On=<{ —8py/Vs, 1=2 on 9.
—6p,~_2/8s - 8P,;_3/38, i >3,

The coeflicients in the asymptotic expansion of w are then given by
{ Ui, i # 2,
w; = .
vo T, 1=2.
Note that wq satisfies the boundary value problem

DA% wy=g inQ, w0=%=0 on 0f).
an

It is useful to express the first terms of the expansions for w and ¢ in terms of wp.
First of all, there is a simple relation between wg and ¢o.
THEOREM 6.1.

@0 = grad wyp.

Proof. From (3.10) and (3.9), it follows that ¢o = grad u for some p € H2(R2).
Inserting in (3.7) and taking the divergence gives

DA’p=—Ar=y.

Comparing with the defining equations for wy, we see that u = wy. 0
Clearly w; = v; = 0 and ws = v9 + r, where

(6.1) A%y, =0 inf, vg =0, Ovy/On = —0py/ds on 09,
(6.2) Ar=—g inQ, r=0 on oN.

Now, from (3.7),

3170 T or _ BAwo 91
(63) E—dvaé'(qbo) n+%-—D——a—h——+an.
(6.4) 9o _ _ div C&(¢o) - s = —D22W0

on ds
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Using (6.3) in (6.1) and combining with (6.2), we get

Ow 0Aw

2 2 0

=-A Q, =0, —=-D ,

A® wq g on wa o o

which is a biharmonic problem for w;. From the definitions, w3 = v3 is a biharmonic
function vanishing on 9 with dwz/dn = —0P,/0s (since p; = 0). Using (3.20) and
(6.4) to simplify the latter boundary condition gives the following biharmonic problem
for ws:

2

A’ws=0 in®, ws=0, %“f = DO Auy onon.
Turning to the expansion for ¢, the expression for ®¢ in (3.20) becomes, in light of
(6.4),

A wo

(6.5) Po(p,0) = -D—

(0,0)e=s.

To determine ¢3, we note from (3.10) that rot ¢ is constant. Since

/rot¢2=—/ ¢P2-8= by-3=0,
Q on on

rot ¢2 = 0 and ¢, = grad ¢ for some function 9. Substituting in (3.7) and taking the
divergence shows that 1 is biharmonic. Then the boundary conditions grad ¢ = —®,
on 90 determine ¥ modulo R and ¢ completely. In light of (6.5), the boundary
conditions on 1 become

Yp=DAwy (modR), 8Y/On=0 ondQ.

We now obtain a priori estimates for the w; and error estimates for the finite sums
of the expansion.

THEOREM 6.2 (A PRIORI ESTIMATES FOR THE w;). Leti € N, s > 2. Then

lwills < Cllglls+i-a-

Proof. This follows easily from regularity for the biharmonic equation, Corol-
lary 4.4, and (45). 0
Let w? = w — ZLO t‘w; denote the error in the partial sums of the asymptotic

expansion
e .
W~ Z t'w;.
=0
The next theorem bounds the error in expansion. Note that the order of the error is

the same in all Sobolev norms, reflecting the fact that w does not involve a boundary
layer.

THEOREM 6.3 (ERROR ESTIMATES FOR w). Forn=1,2,--- and s =1,2,---

”wf”s S C(tn+1"g"n+s—3 + tn+8+1”g”n+2a—3)'

Proof. Set vZ =v—3Y7_ t'v;. Note that w? = vF for n > 1, and w¥ = v¥ +t2r,
so it suffices to prove the theorem with wZ replaced by vE.
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Now
DA*vE=0 inQ,
vE=0 onaQ,
and

E

n

0
ZZn _ _ 2Y . 4 _nB
. t (P~ Pn—2 — Pn—3)

9 n+s—1 ) n+s—2 )
=—t25; (pf+s_1+ > otp+ Y t‘P,-_l).
1 1

i=n-— i=n—

Thus, using regularity results for the biharmonic problem,

E
=), < 0|2
on s—-3/2
n+s—1 ] n+s—2
< Ct2 (”pf+s—1"s/ﬂ + Z tz”pi”s/R + Z tthi—lls—l/2) .
i=n—1 i=n—1

Applying Theorem 5.1 or 5.2, Theorem 4.3, and Corollary 4.4, we get

n+s—1
IWE Il < Cr? (t"-1/2||gun+s-5/2+t"+’-1ugun+23_3+ > t‘"s"m—z)

i=n-—1

< C(tn+1"g"n+s—3 + tn+s+1"g"n+28—3),

as desired. 0

Using a similar argument, we can also obtain regularity estimates for w in H*()
uniform with respect to t.

THEOREM 6.4. For s = 2,3,--- there exists a constant C independent of t such
that

lolls < Cllglls—a + tllglls-2), s =2,3,
lwlls < C(llglls—a + t°llgll2a-4), =4

Proof. Using standard regularity results for the biharmonic problem and (4.5),
we get

(6.6) lwlls < llvlls + 8lirlls < Cllglls—s + t710p/Bs|s—3/2 + £*lglls—2)-

When s > 4, we substitute p = Zf;g tip; + x Zf;g t+1 P, +pF ,, into (6.6) and apply
Corollary 4.4 and Theorem 5.2 to estimate the right-hand side, obtaining

s—2 s—4
lwlls < C (llgllﬂ + 3t 2|gllarica + D 3 Igllarin + t”"’uglls_m) ,

=0 =0

which gives the desired result.
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When s = 2 or s = 3, we substitute p = po +p¥ into (6.6) and complete the proof
with a similar argument. 0

Recall that the scaled transverse shear stress is given by ¢ = t~%(gradw — ¢),
which we decomposed as gradr + curlp. We can obtain an asymptotic expansion
for the shear stress from either of these expressions, in the former case noting a
cancellation due to Theorem 6.1. Thus, formally,

¢~ (gradws — ¢2) +t(gradws — @3) + -+ — x(Po + tP1 + - -)
~ (gradr + curl po) + t? curlps + 3 curlps + - - -+ x(tcurl Py + t2curl P, 4 - - ).

In light of our previous results, it is straightforward to bound the individual terms in
either of these expansions as well as the remainders when the expansions are termi-
nated. Here we content ourselves with determining the regularity of the shear stress
vector and its dependence on t.

THEOREM 6.5. Let s > —1 be an integer. Then there exists a constant C inde-
pendent of t such that

I¢ls < 72 *llgll-1/2 + llglls-1)-

Proof. This follows immediately from Theorem 5.3 and (4.5). [
Similar bounds hold in the noninteger order Sobolev spaces. In particular,

I¢ll1/2 < Cllgll-1/2 + /2 llgllo),

as follows immediately from (4.5) and (5.7). In general ||¢||s will blow up as ¢t — 0 if
s > 1/2. Thus the shear stress evidences a rather strong boundary layer.

7. Hard simply-supported boundary conditions. Two sets of boundary
conditions are commonly used with the Reissner—-Mindlin equations to model a simply-
supported plate. Boundary conditions for a hard simply-supported plate are

M,$p=0, ¢-8s=0, w=0,

where M,,¢ = ntC £(p)n, or, in (p,d) coordinates,

Ts_p[_% ¢
Mnd)—D(—gp-'n'l‘V??—é'.S).

(For a soft simply-supported plate the condition ¢-s = 0 is replaced by s!C £(¢)n = 0.
Thus, in both cases the lateral edge of the undisplaced plate is not permitted to
displace vertically. In the soft case a vertical fiber on the lateral edge is permitted
to rotate freely, while in the hard case it may only rotate in the plane normal to the
edge. The soft conditions would seem to be easier to realize in practice.)

The boundary layer analysis for the hard simply-supported plate, which we con-
sider in this section, is very similar to that for the clamped plate. The soft simply-
supported plate has a significantly stronger boundary layer which will be investigated
in a subsequent paper.

The only difference in the asymptotic expansions themselves for the hard simply-
supported Reissner-Mindlin plate and the clamped plate is that the boundary condi-
tions for the problems defining the interior expansion functions must be modified. All
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the major estimates for the expansion functions and all the error analysis carries over.
However, at a few places in the analysis additional terms must be considered. In this
section we indicate very briefly these additional considerations.

As in the case of the clamped plate, we use the decomposition of the shear stress
vector, given by formula (2.2). We then obtain the reformulation of (2.3)—(2.6), where
the boundary conditions (2.7) are replaced by:

r=0, ¢-8=0, Mpp=0, 9p/On=0, w=0.

The forms of the asymptotic expansions for ¢ and p are the same as those given in
§ 3 for the clamped plate, and the interior approximations satisfy the same partial
differential equations (3.7), (3.10), but the boundary conditions (3.9) are replaced by

5 {0, i=0,1,
;8= .
' b, -8, i2>2,

and
0, i=0,
M,¢; = { D(0d,/8p) - n, i=1,
D[(8®;_1/8p) - n — v(0®;_5/86) - 5], i>2.

The boundary correctors are again defined by (3.16)-(3.19). Thus, the analysis in
§ 3 remains valid. In particular, Theorem 3.3 still holds and the formula for the first
boundary corrector is again (3.20). It follows immediately that M, ¢1 = 0 on 0 and
hence ¢; =0, p; =0.

To bound the errors in the asymptotic expansions, we need analogues of the results

proved in § 4. From the form of the boundary correctors (given in Theorem 3.3), we
get immediately that

o0P; *\ | Bp,
. ils | < .
(7.1) [Bila + 1| = cy

on

s j=0

b
s+i—j

for all s € R, ¢ € N. To estimate the interior expansion functions we use the following
analogue of Lemma 4.2.

LEMMA 7.1. Let s € N, f € H*(Q) N HY(Q), g € H*(Q)/R, k € H*+/2(5Q),
and | € H*~Y/2(0Q) be given. Then there exist unique ¥ € H**(Q), ¢ € H*(Q)/R
satisfying the partial differential equations

(7.2) —div CE(y) — curlg = grad f,
(7.3) —rott = g (mod R),

and the boundary conditions
P-s=k, My =1.
Moreover, there exists a constant C depending only on s, E, v, and ) such that

i lls+1 + llglls/r < CUIflls + llglle/r + [klsa/2 + [Us-1/2)-
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Proof. The weak form of the boundary value problem is to find ¥ € H'(Q) such
that ¢ - s = k on 90 and ¢ € L?(Q)/R satisifying

(CE(), E(1)) — (g rot p) = —(f, div p) + (I, u - n),
- (I‘Ot ¢"v) = (ga 'U),

for all u € H' () such that g -s =0 on 00 and all v € L?() of mean value zero.
Existence and uniqueness of a solution in H'(Q) x L?(2)/R is proved just as for the
generalized Stokes equations, e.g., by applying Brezzi’s theorem [4]. The estimate
for s = 0 follows from the same argument. To establish the claimed regularity for
s > 1, we apply the Helmholtz decomposition to 3 to get ¥ = grad z + curlb, with
z € HY(Q), b € H(Q)/R. Now, it suffices to show that

”b"s+2/R + “z”s+2 < C(||f||s + "g”s/R + |k|s+1/2)’ s € N’

since this gives the estimate on 1 immediately, and that on ¢ then follows from (7.2).
From (7.3) we have

Ab=g (modR) inQ,

with boundary conditions 8b/0n = k, so the desired bound on b follows from regularity
for the Neumann problem for Laplace’s equation. We prove the desired estimate for
z by induction on s. The case s = 0 follows from the bound on |[4||; since z = div .
Thus we assume that s is a positive integer.

Let w= DAz + f. Since

8%z 0z
Mn(gradZ) = D [AZ - (1 - V) (5;—2‘ + Kl—a—';i)] s
o db ab
M, (curld) = D(1 -v) (—-—-—88 ot K——as) ,

the boundary conditions for ¢ imply that
w—f=DAz=1+D(1-v)(8%2/0s* + kdz/dn + dk/Ds — kBb/ds) on BN,
or, since z and f vanish on 91,
w=14+D(1 —-v)(k0z/0n + dk/ds — kOb/Ds) on IN.
Now, taking the divergence of equation (7.2) gives
-DA?z=Af inQ.

so w is harmonic. Applying regularity for the Dirichlet problem for Laplace’s equation
then gives

lwlls < C(102/0n|s—1/2 + |0k/Os|s—1/2 + |0b/Os|s—1/2)
< C(llells+1 + klsw1/2 + I0lls+1/8)
< C(ll2lls+1 + |kls+1/2 + llglls/r)-
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Finally z satisfies

—Az=D"Yf-w) inQ, z=0 on 09,
so another application of regularity for the Dirichlet problem shows that

lzlls42 < C(Iflls + llwlls) < CUIflls + Nglls/m + [Elst1/2 + l2lls+1)

and the proof is completed by induction. ]

Using this result and (7.1), it follows that Theorem 4.3 holds also in the hard
simply-supported case, and then that Theorem 4.5 also remains valid.

Turning to the finite interior and boundary expansions, Theorem 4.6 and Theo-
rem 4.7 hold as before. However, in order to prove the analogue of Theorem 5.1, we
need a slight refinement of the estimate of || Ry, ||-1.

THEOREM 7.2. If ¢ € H' () satisfies -8 =0 on OQ and m € N, then

(R, ) —t™+3 <D% ‘n,p- n>

< Ct"‘+5/2||9||m+1/2||¢||1-

Proof. The proof is very close to that of the H~! estimate in Theorem 4.7. The
only difference is that instead of (4.14) we must show that

(7.4)

OB, .
(B3, 9) -7 (D2TL )| < OOl

(which is the same as (4.14) for ¢ € H'(R2)). Since 3 does not vanish on the boundary,
when we integrate by parts in (4.13) we get a boundary term:

(xRL, )

= g2 / / ” (A $O8mtL A5Pm+l) a% {x()%(p.0)1 - x(6)]} dpds

— gmt2 <-Aot "t AsPmi, ¢‘> .
Now As - =38 -9 =0 and Ay = Apn(yp - n) = —Dn(y - n), so

<.A t6¢6m+1 - A5Pm+1,'!,b> =~ <Dad:97:z+1 n ’(/) n>

The proof of inequality (7.4) and the remainder of the theorem now proceed just as
in Theorem 4.7. 0

Defining ¢Z and pZ as in § 5, we see that they again satisfy the partial differential
equations (5.1) and (5.2). The boundary conditions now become

0P, _1 apf PSS ap-n—l 6pn

o an an on’

and the variational equation (5.4) which enters the proof of Theorem 5.1 thus becomes

¢ .s=0, M,¢pZ =t"*"'D

(CEWE).EH) ~ (curlpf,¥) = ~(Racar$) + 241D ( Frt e mpom)
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valid for 4 with vanishing tangential component on 2. We bounded the right-hand
side of this equation in Theorem 7.2. This is the only additional consideration in
establishing Theorem 5.1 in the hard simply-supported case.

The higher-order estimates in Theorem 5.2 also carry over to the present case,
but again there is an additional term to be bounded because ¢Z does not vanish on
00. The bound for ||¢Z||, given in (5.5) must be modified to include the additional

term
ob,_,
— n

on

tn+1

s—3/2

In view of (7.1) and Theorem 4.3, this term is easily bounded by t"||g||s+n—3, which
is no larger than other terms which were treated in the proof of Theorem 5.2. Of
course, once Theorems 4.3, 5.1, and 5.2 are established, the regularity results given in
Theorem 5.3 follow.

An asymptotic expansion and regularity results for the transverse displacement
and the shear stress can be developed as in § 6. Naturally the boundary conditions
in the defining problems for the expansion functions are changed. The boundary
conditions on ¢ and p imply that v = w — t2r satisfies, in addition to the differential
equation D A% v = g, the boundary conditions

v=0, (1-v)8%/0n* +vAv =131 —v)kdp/ds on 9,

where x denotes the curvature of 0. It is then clear how to define the regular
expansion for v and hence w, and all the analysis of § 6 carries over easily.

Appendix. In this appendix we give the proof of Theorem 3.3 concerning the
existence, uniqueness, and form of the solution of the boundary value problems defining
the boundary correctors.

Proof. Differentiating (3.17) with respect to g, we obtain

0%d; N P, 0G;(p,9)

s a2 | ap® op

Multiplying (3.16) by AE ! and taking the inner product with 215, we obtain

. 0P,

;)2
A —5 -
0p

+ A A AT = AL R(p.0).

Adding these equations and observing from Lemma 3.1 that Ag,&g 1;45 = —c?, we get

BB 0P i1z
(8.1) 9 —c? % =—ALAS F(p,0) +

9Gi(,9) _ 5
o5 =

The general solution of the associated homogeneous equation is c;(6) + cz(f)e™ +
c3(0)e®, with the functions c; arbitrary. Now if we have two solutions to (3.16)-
(3.19), then the difference in the values of P; must be of this form. Applying (3.19)
implies that ¢; and c3 vanish, and then the homogeneous form of (3.18) implies that
co vanishes. Thus there can be at most one function P; satisfying (3.16)—(3.19). Once
P, is known, @; is determined up to the addition of a function linear in p by (3.16).
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In light of (3.19), @, is uniquely determined. Thus we have shown that there can be
at most one solution (®;, P;) to (3.16)—(3.19).
Let us say that a scalar-valued function Q(p,0) is of type (m,1) if

QP, =e CPZZZa]kI P 860161’](0 0)

k=0 j=0 1=0

for some smooth functions a;xi(f). A vector-valued function is of type (m,3) if all
components are. We claim that there is a solution (®;, B;) to (3.16)—(3.19) which is of
of type (i,7). We will establish the claim by induction on ¢, thereby completing the
proof of the theorem. The solution given in (3.20) verifies the claim for i = 0. Now
suppose that (ﬁij, 15]-) is of type (j,5) for j = 0,1,--- ,i—1. It follows easily from their
respective definitions (just after (3.16) and in (3.17) and (8.1)) that F}, G;, and H; are
of type (i — 1,3). It is then elementary to see that the differential equation (8.1) has
a unique solution of type (4,1) satisfying the boundary condition (3.18). Next, there
is a unique function &; of type (i,4) satisfying (3.16). Together (3.16), (8.1), and the
decay at infinity of &, Gl, and the p-derivatives of ) 2 imply (3.17). Thus (Q,,P)
satisfy (3.16)—(3.19) and are of the desired form. This completes the induction.
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A SINGULAR PERTURBATION ANALYSIS OF REVERSE BIASED
pn-JUNCTIONS*

CHRISTIAN SCHMEISERT

Abstract. A two-dimensional version of the drift-diffusion model for stationary flow of charge carriers
in semiconductor devices is considered. It consists of a system of three elliptic equations that is singularly
perturbed for large applied biases. For the case of a pn-junction diode under strong reverse bias, an
approximating problem, which includes a free-boundary problem for the potential and a mixed elliptic-
hyperbolic problem for the analysis of current flow, is derived. The solvability of this formal limit problem
is proved.

Key words. semiconductors, drift-diffusion model, singular perturbations
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1. Introduction. In this paper we consider the system

(1.1a) Ay=n—p—-C(x),
(1.1b) eVn—nVy=¢el,, divJ, =0,
(1.1¢) —eVp—pVy=¢el,, divJ,=0

for x € Q = R?, where  is a bounded simply-connected domain with Lipschitz boundary
representing the semiconductor part of an electronic device. The scaling that leads to
(1.1) (see [13]) is valid for large applied biases. The dimensionless parameter ¢ is
small and positive in this case. The Poisson equation (1.1a) determines the electrostatic
potential ¢ and thus the electric field E =-V¢. The term —n+p+ C(x) on the
right-hand side is the space charge density with contributions from the negatively
charged free electrons (density n), the positively charged holes (density p), and a fixed
distribution of charges C(x) called the doping profile. The equations in (1.1b,c)
represent a convection-diffusion model for the electron and hole current densities J,
and J,, and current continuity.

We consider (1.1) subject to mixed Dirichlet-Neumann boundary conditions.
Dirichlet conditions are given at contacts (disjoint, connected boundary segments,
closed with respect to 3)) and homogeneous Neumann conditions at the remaining
insulating part of the boundary.

A semiconductor device is specified by the doping profile and the number and
location of contacts. We consider a pn-junction diode, where Q splits into a p-region
Q, where C(x)<0 holds and an n-region , where C(x)>0 holds. Q; and Q, are
separated by the pn-junction I'. The following technical assumptions will be used:

(A1) I' is a smooth curve that meets 9{) under right angles. In neighborhoods of
the points where I' meets 9(}, the boundary is given by straight line segments.

(A2) The doping profile is smooth in Q, U Q, and has jump discontinuities at I'.
|C(x)|= vy>0 holds.

* Received by the editors August 3, 1988; accepted for publication (in revised form) May 26, 1989.
This work was supported by “QOsterreichischer Fonds zur Forderung der wissenschaftlichen Forschung.”

T Institut fiir Angewandte und Numerische Mathematik, Technical University of Vienna, Wiedner
Haupstrasse 8-10/115, A-1040 Vienna, Austria.
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A diode has two contacts C,, C,<4Q with C, <94, and C,<3(),. We assume the
following:

(A3) The closure T' of the pn-junction does not intersect the contacts C, and C,.

A typical example for the device geometry is depicted in Fig. 1.1.
We consider (1.1) subject to the boundary conditions

¢IC,=09 ll’|C2=a’

1.2) n|c,.c,=3(C++ C2+454)|c,,cz,
Ple.c,=3(—C+~JC*+48%)|¢, c,»
(1.3) V- V|30N=V" : Vlaﬂ,.,-:vP' V|30N=0

where 3Q n =3Q\(C, U C,) denotes the insulating boundary segments and v the unit
outward normal.

The parameter a represents the applied voltage with a >0 in the case of large
reverse bias. The Dirichlet data for n and p are obtained from the assumptions of
vanishing space charge (n—p— C =0) and thermal equilibrium (np = §*) at the con-
tacts. The thermal equilibrium equation represents a mass-action law, where 87 is the
scaled intrinsic number of the semiconductor (see [15] for details). In practical
applications & takes small values because densities (such as the intrinsic number) are
scaled by the maximal value of the doping profile, which usually is much larger than
the intrinsic carrier density.

Several existence proofs for (1.1)-(1.3) can be found in the literature (see [11]
and [12] and references therein). An application of Theorem 3.2.1 in [11] yields
Theorem 1.1.

THEOREM 1.1. Problem (1.1)-(1.3) has a solution (y, n, p) € (H'(Q) N L*(Q))? that
satisfies

—eB=yYy=at+tef inQ
where
B:=21In[(||C|l =)+ V| Clli=)+48%)/28%]

holds.

Although B tends to infinity as § » 0, the product ¢ is usually small compared
to unity. This suggests an asymptotic analysis of (1.1)-(1.3) for & >0. Theorem 1.1

lC‘

Q, /

G
F1G. 1.1. Device geometry.
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shows that the potential is bounded uniformly in &. For a rigorous analysis of the limit
e >0 additional a priori estimates of this kind would be necessary. However, the
existence result on which Theorem 1.1 is based does not provide sufficiently sharp
bounds.

In [4] Caffarelli and Friedman treated related problems. The main difference from
(1.1)-(1.3) is a modification of the boundary conditions that allows for a rigorous
analysis of a simplified problem.

Similar results for one-dimensional problems have been developed in a series of
papers by Brezzi et al. [1]-[3]. The analysis of the present work is based on the formal
methods of singular perturbation theory.

Although the modified boundary conditions in the above-mentioned papers do
not allow for an analysis of current flow, the limiting behavior of the potential is

obtained. Under appropriate assumptions ¢ is shown to converge to the solution of
the variational inequality

(1.4) Yoe K, : I VoV (v — 1) dxéJ’ C(x)(v—yp) dx Vvek,
Q (Y]

where

(1.5) K, ={y e H'(Q): ¥|c,=0,¥|c,= 2, 0S¢y = a ae.in O}

holds. Inequality (1.4) can be interpreted as a double obstacle problem for the deforma-
tion ¢ of a membrane. The membrane lies between the obstacles represented by ¢ =0
and ¢ = « and is fixed to the lower obstacle along C; and to the upper obstacle along
C,. In this context C(x) is a transversal force pushing downward in , and upward
in 02 .

Without being derived as a limit of (1.1)-(1.3), the double obstacle problem (1.4)
has already been formulated as a model for the potential distribution in [7] and [10].
It can be motivated by the reduced equations

(1.6) A= no—po— C(x), noVio=peVipy="0

and the estimates in Theorem 1.1.
For the carrier densities n, and p, the reduced system implies

ng—po—C(x)=0 inZUA
where Z and A denote the coincidence sets
Z={xeQ: py(x) =0},
A={xeQ: Yo(x)=a},
ng=po=0 in N=Q\(ZUA).

In the physical literature the noncoincidence set N is called the depletion region, as
it is depleted of charge carriers, or the space charge region.

The equations above are not sufficient for characterizing the limiting charge carrier
and current densities. For a one-dimensional situation the limiting problem has been
completed by Schmeiser [13]. It is the main purpose of the present work to extend
these results to the two-dimensional case.

The formulation of the limit problem requires certain topological properties of
the sets Z, A, and N that are proved in § 2 to hold for « small enough.

In § 3 we introduce asymptotic expansions in powers of € for the solution that
allow us to formulate equations determining the current flow. It turns out that in the
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space charge region N the flow is purely convective and governed by a hyperbolic
system, whereas diffusion is significant in Z and A, where a system of elliptic equations
has to be solved. A proof of existence of a locally unique solution of the coupled
problem for small 8* is the main result of § 3.

2. The double obstacle problem. This section is concerned with an analysis of
problem (1.4) for small values of . Standard results for variational inequalities [8]
yield Theorem 2.1.

THEOREM 2.1. (A) Problem (1.4) has a unique solution s, that is Hélder continuous.
Besides, o€ W>P(Q') holds for any p <o and for any subdomain €' of Q whose closure
does not contain critical boundary points, i.e., (a) points where 3} is not smooth, and
(b) edges of the contacts where Dirichlet and Neumann boundary conditions meet.

(B) Ao+ C(x)=0 ae.inZU N,
Ao+ C(x)=0 a.einAUN.

A direct consequence of (B) is Corollary 2.1.

CoROLLARY 2.1. Z<=(),, Ac(,, "< N. By continuity of ,, Z and A are closed,
and thus, N is open relative to (). A refinement of the last result in Corollary 2.1 is
Lemma 2.1.

LeEmma 2.1. T N.

Proof. Suppose x,€I'N A. The smoothness of I' and the continuity of ¢, imply
the existence of a ball Br(y)< Q,N N with x,€dBg(y) (see Fig. 2.1). We have

(a) Ago=—-C(x)>0in Bgr(y),

(b) @ =o(x0) > o(x) for x € Br(y),

(¢) ¢, continuous.

Application of Lemma 3.4 in [6] leads to

Vipo(xo) - >0

where v is the outward unit normal on §Bg(y). This is in contradiction to V¢,=0 in
A. Analogously we prove ' Z ={ }, which completes the proof.

o,

Q,

Xo
FiG. 2.1

The lemma immediately implies ' = ,, ', =Q, for the free boundaries I',
separating Z and N and I'4 separating A and N. From the smoothness of C(x) in
0,UQ, we obtain smoothness of I', and I', by standard results (see [5], [8]).

For the analysis of the following section we will need Z, A, and N to be connected.
For Z and A this cannot be expected to hold in general. But we have Lemma 2.2.

LeEMMA 2.2. N is connected.
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Proof. By the above results there is a component Nr of N with I'c Nr. Assume
the existence of an additional component N < (),. We have

Agy=-C(x)>0 inN,
$o=0 or Vi,-»=0 onoN,
which implies ¢, =0 in N by the maximum principle. This is in contradiction to ¢,>0
in N. Analogously we show that there does not exist an additional component of N
in Q,. Thus, N = N, which completes the proof.
In[13] we have shown thatI', and I" 4 converge to I" as @ - 0 in the one-dimensional

case. In the following this result is extended to two dimensions.
We define

Q,={xeQ:d(x,T)<p}.
With s(x):=d(x,T') we have
se C*(Q,,) forsome py>0,
|Vs|=1, As=-M inQ, forsomeM >0
by assumption (Al).

THEOREM 2.2. Let a be small enough so that p = (2a(Mpy+1)/v)"><p, holds.
Then N <, holds.

Remark. The theorem is a mathematical version of the statement, “The width of
the depletion region is proportional to the square root of the applied bias,” which is
well known in the engineering literature (see [16]) for the case of abrupt junctions.
The result could be extended to graded junctions where the doping profile smoothly
changes sign across I" and, accordingly, y> 0 with the required properties does not
exist. In this case the width of the depletion region is O(a'/?) for small values of a.

Proof. Let us deal with the part of N lying in Q, first. We define a comparison
function by

) {o, xeQ\Q,,
YT la(-s(x)/p)? xeNQ,.

Obviously, we C'(Q,), w=0 in Q,, w|c, =0, w|r=a holds. Besides, we have for
xeQ;NQ,

Aw(x)=2a/p’[(s—p)As+|Vs|’]

=7 - +
—Mp0+l[(p s)M +1]

pM+1
p0M+1

A
A

=y vy=-C(x),

and for xe Q,\Q,
Aw(x)=0<—-C(x).
This shows that w is a supersolution of the equation Aw+ C(x) =01in Q,. A comparison
principle as in [8] implies
Yo=w inQ,,
and thus, =0 in Q,\Q,. Similarly, it can be shown that ¢,=a in Q,\Q, holds,
which completes the proof.
COROLLARY 2.2. o€ W*P(Q) for p <o and for a small enough.

Proof. =0 or o= a in neighborhoods of critical boundary points by Theorem
2.2 and assumption (Al). The result now follows by Theorem 2.1.
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Theorem 2.2 shows that the free boundaries meet 9() within the Neumann segments
for a small enough.

LeMMA 2.3. (a) If 9Q) is smooth in a neighborhood of a point x, where one of the
free boundaries meets Q) ,, then the angle between the free boundary and 6Q) y, at x, is /2.

(b) Vio/|Vip| is orthogonal to the free boundaries.

Proof. (a) A locally orthogonal smooth coordinate transformation moves x, to
the origin and a neighborhood of x, in Q to {x,>0} N Bg(0), where (x,, x,) are the
new coordinates. (See Fig. 2.2.). The extension of ¢, to Br(0) as an even function of
x, is the solution of a variational inequality in Bg(0). The smoothness of the free
boundary that follows from standard results, and its symmetry with respect to the
x,-axis, imply the conclusion of the lemma.

(b) Let xo€Q lie on I'z. Then ¢, is smooth in a neighborhood of x, in N by
elliptic regularity. As in the proof of (a) we transform this neighborhood to {x,>0}N
Bgr(0). We have ¢o(x,, x,) = x,2f(x,, X,) with f smooth because =0 for x,<0 and
Yo C'(Bg). Assumption (A2) and the fact that i, satisfies Ao+ C(x) =0 in N imply

f(x,,0)=y>0.
If we use this, straightforward computation shows

Lim Vio/ |V ol = (0, 1),

which is the desired result. It can be extended to points where I'; meets the boundary
by reflection as in the proof of Lemma 2.3. Points on I', are treated analogously.

ThorT, Ax

Br(0)

The remaining part of this section is devoted to a more detailed analysis of the
solution of (1.4) for small a. With the substitution ¢, = a¢, (1.4) changes to

2.1) d;eK,:aj VoV(v—9) dxzj' C(x)(v—¢)dx VveKk,
o a
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where K, is defined as in (1.5). This is a singularly perturbed variational inequality.
The reduced problem obtained by formally setting @ =0 in (2.1) does not have a
solution. This difficulty can be overcome by considering a larger solution space. Lions
[9] treated problems where the reduced variational inequality is governed by a bilinear
form that is coercive in the enlarged space. As this is not possible in our situation, we
guarantee solvability by choosing the larger space such that K, becomes bounded. Our
choice is L*(Q) and the reduced problem is defined as

(2.2) dek,: Ogj C(x)(v—¢)dx Vvek,
Q
where K, is the closure of K, in L*(2). Obviously (2.2) has the unique solution
- [0 ae.inQ,,
2.3 =
(2.3) ¢ {1 a.e.in (),.

From the proof of Theorem 2.2 we obtain a validity result for the formal
approximation ¢. _
LemMMA 2.4. For the solutions ¢ of (2.1) and ¢ of (2.2)

6 —dlr@=0(a"?") asa-0

holds for p=1.
Proof. For the function w(x) defined in the proof of Theorem 2.2 we have

|p(x)—p(x)|=w/a ae.inQ,.
This implies
_ /p
||¢‘¢||LP(0.)§(J (1—s(x)/p)* dx)
= (meas (Q,NQ,))"" = 0(a"?).

1N,

Similarly we obtain

16 =&l ry=0(a"?),
which completes the proof.
Obviously, ¢ is not smooth enough for a uniformly valid approximation. To

improve on that we introduce a correction layer at I'. Considering a local change of
variables

(%1, x3) > (1, 5)
where

)_{—d(x,F) inQ,,
=g in,,

we introduce the fast variable o =s/va and the o-interval I =(—v2(Mpo+1)/7,
v2(Mpy+1)/v) (compare with Theorem 2.2). Then the layer problem is given by the
one-dimensional variational inequality:

¢3e12;I bo(vy— o) daéJ C(r,o)(v—¢)do VveK
I I
where K is defined by
K ={éeH'(I): $(~—v2(Mpo+1)/7) =0,
é(V2(Mpo+1)/y)=1,0=$ =1}.
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The one-dimensional variational inequality has been treated in [13]; It is easy to show
that the free boundaries are located in the interior of I and that ¢ is strictly mono-
tonically increasing between them.

A formal approximation of the solution of (2.1) is defined by
{ é inQO\Q,,

é inQ,.
THEOREM 2.3. ”QS - d’as" H' (@)= 0(a1/4)'

Proof. By assumptions (A1), (A2) it is straightforward to show that ¢, solves the
variational inequality

Gas =

(24) d’aseKlz aj V¢as(v_¢as) dxgj (C(x)+ag(x))(v-—¢as) dx VUEKI
Q Q

where g L) is bounded independently of a. For w= ¢ — ¢,; we get from Lemma
2.4 and the definition of ¢,
(2.5) ” Wll LP(Q) = O(al/zp).

If we set v = ¢, in (2.1) and v = ¢ in (2.4), the sum of the resulting inequalities reads

—a J [Vw)?dx=a J g(x)wadx.
Q Q
This implies

VWl Zz = gl = llwl @) = O(a'?)

by Hélder’s inequality, the boundedness of g(x), and (2.5) with p = 1. Combining this
estimate with (2.5) (p =2) completes the proof.
Finally, we state two assumptions that are needed in the following section:

(A4) Z and A are connected.
(A5) Vipo/|Vibo| is Lipschitz in N.

Since both assumptions are satisfied by the formal approximations constructed
above, the author conjectures that they are satisfied for & small enough, although a
proof of this conjecture is not available.

3. Analysis of current flow. By formally setting € =0 in (1.1) and considering the
solution of (1.4) we obtain the equations

(3.1a) ny—po—C(x)=0 inZUA,
(3.1b) n0=p0=0 in IV,
(3.10) diV Jno = diV JP0= 0 in Q,

which are not sufficient for the computation of ny, po, Juo, and J,. It is a standard
procedure in perturbation theory to derive additional equations by introducing
asymptotic expansions for the solution and equating coefficients of higher-order terms
(see [14], [18]). We make the ansatz

w=wo+ew, + 0(&?)
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where w stands for any of the solution components. Substitution in (1.1b, c) and
comparison of coefficients of ¢ leads to

Vng—noVip —n Vo= J,o,
=Vpo—=poVpy — PV o= Jpo.
With (3.1) and our knowledge about ¢, we arrive at
(3.2) Juwo=—n,Viy, Jpo= —=piVyp in N,
Jno=Vno—noVi
Jpo=—Vpo—poVi¥,

Our next aim is to eliminate ¢, from (3.1a), (3.3). In [13] this is done by introducing
the slow variable np. As the resulting problem is difficult to handle in the two-
dimensional case, we instead introduce the change of variables

3.3) in ZU A.

no=e"u,  po=e V.
If we use (3.1a) for eliminating ,, (3.3) changes to

_C+VJC?+4uv Vi

no

2u
3.4) inZUA.
—~C+vJC*+4uw
Jpo=——F7 Vv
2v

Substituting (3.2) and (3.4) in (3.1c) yields the system
(3.5a) div (n, Vo) =div (p,Vigo) =0 in N,

+VC?*+4 —C+JC*+4
(3.5b)  div (E-%—quu) = div (———% Vv> =0 inZUA,

which is elliptic in ZU A and hyperbolic in N.

Note that the computation of the current densities J,, J,0 in N necessitates the
determination of the O(g) corrections n, and p, of the charge carrier densities. For
singular singularly perturbed problems, it is typical to have to deal with terms of
different orders simultaneously.

The formulation of the problem is completed by prescribing boundary conditions
at Q) and interface conditions at I'; and I'4 (see Fig. 3.1). As i, satisfies the original
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boundary conditions for ¢, homogeneous boundary conditions for the correction ¢,
are required. This leads to

“Ic,,cz=%(c + Cz+454)|cl,cz,

(3.6a) 7
vl =3(-C +‘/C2+484)|C,,C2’

(36b) Vu- v, Vv . Vl(aZUaA)naaN =0.

Since the characteristics of (3.5a) are parallel to AN NdQy, we do not need any
boundary conditions there. At the interfaces I' ; and I" 4, we obviously require continuity
of the normal components of the current densities

(3.60) [-’nO ) V]l"z,l"A = [JPO ' V]FZ,FA =0

where [ - ]s denotes the jump of a quantity across the curve S and » stands for the
unit normal to I';(I" ,) pointing outward from Z(A). The above-mentioned observation
that np is a slow variable leads to the condition [nopolr,r,=0.

By requiring the concentrations to be nonnegative, we see from (3.1) that only p,
has a jump discontinuity at I'; and only n, has a jump discontinuity at I" 4. This implies
that for u and v

(3.6d) ulrz =0, Ul[‘A =0.

The reduced solution is determined completely by solving (3.5), (3.6).

Before starting to analyze the reduced problem we mention that the jumps of p,
atT'; and ny at ' 4 can be smoothed by layer solutions. They are obtained by introducing
fast local coordinates along I'; and I' 4. This leads to a system of ordinary differential
equations on R that has been analyzed in [13].

As a preliminary step in the discussion of the reduced problem we consider the
hyperbolic equations (3.5a). As Vi, vanishes at I'; and I',, the solutions n, and p,
have singularities there in the case of nonvanishing current densities. It has been
demonstrated in [13] that, despite these singularities, matching to layer solutions can
be carried out. The following lemma shows that

n,= O(W‘/’ol_l)

holds close to I'z and I' . From the proof of Lemma 2.3 we see that [V is a possible
choice of a local variable there. Written in the fast variable &=|Vy,|/Ve,
O(Ve/ £)-contributions result from n,; and p,; these can be matched to algebraically
decaying layer solutions of order O(v'¢). The current flow through N is analyzed in
Lemma 3.1.

LEMMA 3.1. Let the operator S: H*(I';) > H"*(T',) be defined by
S(f)=nVq- |,
where n is the solution of
div (nViy) =0 inN,
nVio - v|r, =f

Then S is a bounded and boundedly invertible linear operator.
Proof. We introduce 7i = n|Vy|, which must solve the Cauchy problem

div (AVyo/|Vi) =0 in N,

ﬁlrz =f
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because Vi, - v/|Vio||r, =1 by Lemma 2.3(b). Assumption (A5) implies existence and
uniqueness of .

We define the mapping ¢ :I'; > T4 by following characteristics starting at xeI',
until they leave N at ¢(x)€eT 4. It is another consequence of assumption (A5) that ¢
is a diffeomorphism.

Let x(s) denote a parametrization of I'; by arclength. An application of the
divergence theorem to the region bounded by the segment between x(s) and x(s+ h)
on I',, the characteristics starting at x(s) and x(s+h), and the segment between
& (x(s)) and ¢(x(s+h)) on I', yields

s+h s+h
j f(x(a))da'=—J‘ SN (x(0)))] b dor

5 s

By letting h > 0 we obtain the representation

f(x)==8(f)(¢(x))] bs%|

for the inverse of S. A final application of assumption (A5) and Lemma 2.3(b) implies
|#.%|> 0, which completes the proof.

Remark. The space H'/? was chosen only for convenience in the proof of Theorem
3.1 below. Obviously the result also holds for other function spaces.

Using Lemma 3.1 and introducing u|, = e”, v|z = e, we must still solve a system
of four coupled elliptic boundary value problems:

2e’
div( Vu)=0 inZ,
—C +vJ C?*+4ue”
(3.7a) dle = 28* dlp. =0
G _c+/Crrastly T
Vu- Vlaa,,,naz-‘—‘(),

+ / 2+ w
div(%‘te—va)=0 inA,
C+vJC*+4e™y 2e®

(3.7b) = T P Vwe v, =S Vu- o, ),

2 —C+VC?*+4ue”

C+JC*+48*
w|C2=lnf ’ VW‘ VlaaNnaA=0;
C
2e”
div(—Vv)=0 in A,
C+VC*+4e™v
(3.7¢) ol = 2864 ol =0
“cdCrrastl
Vo V|aﬂNnaA=0;
- +/ 2+ z
div( ¢ (2: Aue Vz)=0 in Z,
—C +vC*+4ue* 2e”
(3.7d) i 72 u|rz=s-'(;—v,,. ,,|FA),

2 C+JC?+4e"v

—C+J/C?*+45*
de=ln =2 Va0 =0,

Gy
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LeEMMA 3.2. For 6*=0, problem (3.7) has a unique solution (u,, vo, Wo, z,) that
satisfies

(3.8a) Up=1,=0,
woe H'(A)N H*(A), zoe H(Z)NH*(Z"),
(3.8b) ln 'y§ Wo, Zoéln ("C" Leo(ﬂ))

for all subdomains Z’ and A’ of Z and A, respectively, that do not contain critical
boundary points as defined in Theorem 2.1.

Remark. Note that H>-regularity holds in neighborhoods of I'; and I', whose
endpoints can be considered critical boundary points for the problem (3.5), (3.6).

Proof. The maximum principle applied to problems (3.7a, ¢) immediately implies
the estimates

of which (3.8a) is a direct consequence. Thus, problems (3.7b, d) for 8*=0 reduce to
div =0 i
(375 (IC|]Vwe)=0 in A,
wole,=In (|C))c,, Vwo * ¥|sa\c,=0;
div =0 i
(3.7d), (IC|Vz,)=0 in Z,
Zo‘cl =In (|C|)|cl, Vz,- 1’|aZ\cl =0.
Again applying the maximum principle, we get solutions woe H'(A) N L®(A), zo€
H'(Z)NL*(Z) and estimates (3.8b). Elliptic regularity implies woe H*(A’"), z,€
H*(Z') for A, Z', which, in addition to the requirements in the statement of the
lemma, do not contain the endpoints of I', and T;.

In the neighborhood of an endpoint x,€9Q of I'y we employ a local coordinate
transformation as in the proof of Lemma 2.3. There it was shown that the extension
of ', to the exterior of () by reflection is smooth. The extension of w, to the exterior
as an even function with respect to 9{) satisfies an elliptic equation and homogeneous
Neumann conditions at the extended I' 5. Thus, elliptic regularity results can be applied
in a neighborhood of x,, giving H?>-regularity of w, there. Treating endpoints of I',
analogously we obtain woe H*(A’), zo€ H*(Z') for A’, Z' as in the statement of the
lemma.

To facilitate the subsequent analysis we make the following additional regularity
assumptions:

(A6) wo€ W(A), zoe WH4(Z).
(A7)  Let foe L*(Q) and f;, f,€ L*(Q) hold.
Then the solution of
Aw=fo+div ((f1,£2) inQ,

W|c,,cz=WD, Vw- V|mN=0
for smooth Dirichlet data wp, is in W'?(Q) and satisfies

Wl wisy = et e(Ifoll 2y + il ey + 12l 2y

The validity of the above assumptions requires a certain behavior of 8€) close to critical
boundary points. Differential equations such as those in (A7) occur when the divergence
terms appearing in (3.7) are expanded, and lower-order terms are considered as data.



REVERSE BIASED pn-JUNCTIONS 325
THEOREM 3.1. For 6* small enough, problem (3.7) has a solution (u, v, w, z) in the
Banach space
B=[(W"(Z)NHX(Z"))x(W"(A)N H*(A)]
satisfying
|(u—uo, v— 15, w—wo, z— 2,)|| 5 = O(6%)

where Z', A’ are as in Lemma 3.2.
Proof. We introduce the errors

S*i=u—u,, 8*%b=v-v,, 8*W=w-w,, 8%=z—z,.

By linearization we rewrite (3.7) as

e’
div( ) in Z,
IC]
(3.93) dl _ 2 a| =0
“T_c+dcrrast e

Va- V|anNnaz =0;

d1v(|C|Vw+|C| va0+f2> =0 inA,
eW
9b C|[VWw+— 10V . Vi +
(39) (l | w lC'v Wo) V|FA (|C| u- Vll";) .f3a
C+J/C?+45*
We,=8*In——>=-——| , Vw- v =0;
|Cz 2C c |aﬂNnaA
. (e" .
dlv(|C|Vv+f4) inA,
(3.9¢) e 2 ble. =0
e cHdC+ast |, e
R V‘anNnaA=0;
d1v(|C|Vz+|C| quo+f5) in Z,
e W
.9d CIVz+—uV . =S" Vo +
(3 ) (‘ | z |C|u Zo) Vlrz (lcl [N V|FA> ﬂ,
. Y. —CH+JC*+48* 3
flo=8""In | Vi laynez=0
Cy

where the operators
. fs:B>(LX(Z)NH'(Z))),
fa fa: B> (L (A)NH'(A))?,
fsiB"Hl/z(rA), fsiB"Hl/z(rz)

can easily be seen to be Lipschitz with O(8*) Lipschitz constants. The proof employs
the trace theorem and the continuous imbedding W'? < L™, Theorem 3.1 follows by
a contraction mapping argument if we can show solvability of the linear problem where
the f; are considered as inhomogeneities.
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Solvability in H'(A)(H'(Z)) of (3.9a, ¢) is immediate. H>-regularity away from
critical boundary points follows as in the proof of Lemma 3.2. For proving W'*-
regularity we rewrite the differential equation in (3.9a) as

Aii =V(|C|/e™)f~div (|C|/ ef;) =|C|/ eV (e*/|C|)Vil.

Using the estimates

IV(ICIl/ e*)fill iy = IV(CI/ )| Ml 2z = elfill 2z
ICI/ e*fill 32y = clfill 2z
I1C|/ eV (e*/|CVil|| 322y = (| C|/ || L= )|V (e*/ |CDI| Lo ) IV || L2z) = ||V i]| 12 z)

where we applied assumption (A6) and the Holder inequality, we obtain it e W'3(Z)
and continuous dependence on the data from assumption (A7). For & we proceed
analogously.

Considering 4 and ¢ as data in (3.9b, d) we see that these problems can obviously
be solved. If we note that the trace theorem (see, e.g., [17]) guarantees a sufficiently
smooth extension of the Neumann data into the interior of Z and A, respectively, the
required regularity can be shown similarly to the treatment of 4 and o.

Thus the proof of Theorem 3.1 is complete.
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Abstract. This paper concerns a system of reaction-diffusion equations that describes the evolution of
population densities of a prey species u and a predator species v inhabiting the same bounded domain.
Under homogeneous Dirichlet boundary conditions, asymptotic stability properties of nonnegative steady
states are discussed. The corresponding steady-state problem has nonnegative solutions of three different
types; the trivial solution (0, 0), the semitrivial solutions (u,0), (0, v) with u, v positive, and a positive
solution (u, v) with both components positive. Stability properties of the trivial and semitrivial solutions
are determined completely. The stability and uniqueness of positive solutions are also studied. This method
is based on spectral analysis, comparison principle, and bifurcation theory.

Key words. reaction-diffusion equations, positive steady state, asymptotic stability, bifurcation, prey-
predator system
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1. Introduction. In this paper we study the following system of reaction-diffusion
equations:

(1) u, =d,Au+au+uf(u,v),
1.1
v, = d,Av+ bv+vg(u, v),

for x =(x,,x,, -, xn)€Q and t>0, where A is the Laplacian, and Q is a bounded
domain in RN with smooth boundary I'. In (1.1), d, and d, are positive diffusion
constants, a and b are some constants, and the interaction between u and v is

determined by f and g. These equations are supplemented by homogeneous Dirichlet
boundary conditions

(1.2) u=v=0 for (x,t)el x(0,00).

Systems such as (1.1) arise in mathematical ecology and describe the evolution
of population densities of two interacting species that inhabit the same region ()
undergoing simple diffusion. We study (1.1) as a model of prey-predator systems. Let
u and v be population densities of a prey and a predator species, respectively. The
constant a in (1.1) represents the birth rate of u and is assumed to be positive. Similarly,
the constant b represents the birth rate of v, but we do not require its positivity. The
functions f and g, reflecting the dynamics of the prey-predator interaction between u
and v, are assumed to fulfill the following conditions:

(A1)  f(u,v) is a C'-function of (u, v) € [0, ©)x [0, ) such that £(0,0)=0 and
fo(u, v) <0 for all (u, v) €[0, ) X [0, co).

(A2) g(u, v) is a C'-function of (u, v) € [0, )X [0, ) such that g(0,0)=0 and
g.(u, v)>0 for all (u, v) €[0, ) x [0, c0).

* Received by the editors August 12, 1988; accepted for publication (in revised form) April 21, 1989.
T Department of Mathematics, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo, 160 Japan.
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Moreover, we impose the following self-limiting assumptions on f and g:
(A.3) f(u, 0) is strictly monotone decreasing in ¥ =0 and lim,,_, f(u, 0) = —c0.

(A.4) g(0, v) is strictly monotone decreasing in v=0 and lim,_, g(u, v) = — for
each u=0.

According to (A.3) and (A.4), each species can control its growth rate in the absence
of the other species. Boundary condition (1.2) means that the habitat €} is surrounded
by hostile environment for both species.

Our purpose is to study the asymptotic behavior of nonnegative solutions for
(1.1)-(1.2). In connection with this study, we are interested in finding all nonnegative
steady-state solutions for (1.1)-(1.2) and deciding their stability. Related problems
have been discussed by many authors; for prey-predator systems with Dirichlet condi-
tions, see, e.g., [1]-[5], [8], [9], [14]-[16]. Especially, Blat and Brown [1] have studied
nonnegative steady-state solutions for (1.1)-(1.2) in the case where

(1.3) flu,v)=—au—av,  g(u,v)=bu—bu,

for some positive constants a,, a,, b;, and b,. By making use of decoupling and global
bifurcation techniques, they have constructed nonnegative steady-state solutions,
including positive ones. Recently, their existence results have been sharpened by Dancer
[8], [9] with the use of degree theory. Indeed, necessary and sufficient conditions are
established for the existence of positive steady-state solutions. (See also Li [16].)

However, it seems that stability properties of steady states have not yet been
completely understood. In this direction, we refer the reader to the work of Conway,
Gardner, and Smoller[4], [5], who have discussed the change of stability of nonnegative
steady states for similar problems in the case N =1.

We will indicate our main results on the stability of nonnegative steady states as
well as on their structure. For the sake of simplicity, we choose f and g of form (1.3)
and take a and b as bifurcation parameters. As in Fig. 1, the (a, b) parameter space
is divided into four regions I, II, III, and IV defined by positive constants a*, b* and
monotone C'-functions @, b. Curves C, and C, are defined by b= b(a) and a = a(b),
respectively. Besides the trivial solution (0, 0), the stationary problem for (1.1)-(1.2)
has two semitrivial solutions as nonnegative steady states: (u*, 0) for a > a™* and (0, v*)
for b> b*. When (a, b) lies in I, (0, 0) is a global attractor for (1.1)-(1.2); that is, all
nonnegative solutions of (1.1)-(1.2) converge to (0,0) as t > . As a increases across
a* for each fixed b, then (u*, 0) bifurcates from (0, 0). For (a, b) € II, (u*, 0) is a global
attractor to (1.1)-(1.2) with nonnegative initial data, whereas (0, 0) loses its stability.
Another semitrivial solution (0, v*) existing for b> b* has similar stability properties
when (a, b) € I11. As a result, (0, 0), (u*, 0), and (0, v*), respectively, possess I, II, and
III as their global stability regions, so that there are no positive steady states for
(a, b) e IUITUIIIL. When (a, b) lies in IV, these trivial and semitrivial solutions become
unstable and a positive steady-state solution (i, ©) appears as a secondary bifurcation
from (u*, 0) or (0, v™). Especially, (i, §) is locally stable for (a, b) € IV restricted in a
neighborhood of C,U C,.

The content of this paper is as follows. In § 2 we collect some preliminary results
about asymptotic and stability properties for related single reaction-diffusion equations.
In § 3 we carry out spectral analysis for trivial and semitrivial steady-state solutions
of (1.1)-(1.2). Section 4 is devoted to the study of global attractivity of trivial and
semitrivial solutions, where the comparison principle is a basic tool. By the local
bifurcation theory due to Crandall and Rabinowitz [6], [7], it is shown in § 5 that
positive steady-state solutions bifurcate from two semitrivial ones and that they are
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locally stable. According to global bifurcation theory, these bifurcating solutions are
connected to each other by a branch of positive steady-state solutions. In § 6 we carry
out bifurcation and stability analysis near (a, b) =(a*, b*) to get more information
about the branch of positive solutions.

The analysis in the present paper concentrates on reaction-diffusion systems of
prey-predator type. However, most of the methods developed in §§ 3, 5, and 6 are also
valid for studying reaction-diffusion systems of competition type.

Notation. The usual norms of the spaces L?(Q) for 1 =p <ooand C () are defined
by

= o d,  fulommax o).
o) xef)

In particular, we denote by (-, ), the inner product of L*(Q). For any integer k, let
W P(Q) be the Sobolev space of functions u: Q - R such that u and its distributional
derivatives up to order k belong to L?(Q). The completion of Cy () with respect to
the W*?(Q)-norm is denoted by W*?(Q).

2. Some preliminaries for single reaction-diffusion equations. In this section we
collect some results about single reaction-diffusion equations that are required later.
Consider the following initial boundary value problem:

w,=dAw+a(x)w+(c+h(w))w inQx (0, ),

w=0 on I x (0, 00),

(2.1)
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where d is a positive constant, a is a C*({})-function with u > 0, and c is a parameter
moving over (—00, ©0). We assume that

(H) h:[0, ) (-0, 0] is a strictly monotone decreasing function of class
C'([0, ©)) such that h(0) =0 and limy o k(W)= —00.

Let p> N and set X = LP(Q). We define a closed linear operator A in X with
domain D(A) by

Au=—dAw for we D(A)= W>P(Q)N W'P(Q).

It is well known that — A generates an analytic semigroup {e~“*},-, and that the solution
w of (2.1) with w(0) = w, satisfies

t

(2.2) w(t) = e_’Awo+J’ e IR (w(s)) ds,
0

where h(w)=(a+c+h(w))w.

Let w, be any nonnegative function of class C(Q) and let w(x, t; w,) denote the
solution of (2.1) with w(0) =w,. By virtue of (H), we can choose M >0 such that
h(M)+c+ | a|lo=0. Then the comparison theorem (see, e.g., Protter and Weinberger
[17]) yields an a priori estimate

(2.3) 0= w(x, t; wo) =max {||wollw, M},

which assures that the solution w of (2.1) exists globally in time. Moreover, using (2.3)
and the smoothing effect of parabolic equations, we can see from (2.2) that, for any
0= a <1, the solution orbit {w(z; w,); t =1} is relatively compact in D(A*) equipped
with graph norm of A” (see Henry [10, Thm. 3.3.6]). Here we observe that

(2.4) D(A*)<= C'(Q) if 1+ N/p<2a,

where injection is continuous and compact (see, e.g., [10, Thms. 1.4.8 and 1.6.1]). In
what follows, we fix a satisfying (p+ N)/2p <a <1. Define the w-limit set w(w,)
associated with the solution orbit {w(t; w,); t =0} by

w(wp) = {w*; there exists a sequence {t,}1c0

2.
(2:5) such that w(t,; wo) » w* in D(A%)};

then it is nonempty, connected, and invariant [10, Thm. 4.3.3]. Furthermore, (2.1) is
gradient-like with respect to the functional

E(w)= L {d|Vw(x)l?/2= (a(x)+c)w(x)’/2— H(w(x))} dx,

where H'(w)=wh(w), so that E is a Lyapunov function on D(A®), that is,
dE (w(t; wy))/dt =0. Therefore,
(2.6) w(wp)<{w*e D(A*); w* is a nonnegative steady-state solution of (2.1)}
[10, Thm. 4.3.4]; so that any w* € w(w,) satisfies
2.7) —dAw—aw=(c+h(w))w and w=0 inQ,

w=0 onT.
Let {, be the least eigenvalue for
(2.8) —dAw—aw={w inQ and w=0 onT.
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It is well known that, if ¢=¢,, then w=0 is the only solution of (2.7), whereas if
¢>{,, then (2.7) has a unique positive solution w* (see, e.g., Blat and Brown [1]).
Thus we are able to show the following proposition in the standard manner with use
of the comparison technique (see, e.g., [5, Prop. 2.1]).

ProposITION 2.1. Let w be the solution of (2.1) with w(-.0) = w,, where wy( % 0)
is a nonnegative function of class C(Q).

(i) If c=¢o, then lim, o w(+, t)=0 in C(Q).

(ii) If ¢>¢o, then lim,o w(-,t)=w*(c) in C(Q), where w*(-; c) is a unique
positive solution of (2.7).

We will investigate some properties related to w*(c) for ¢> ¢,. The linearized
operator L(c): X - X of (2.7) about w*(c) is given by

L(c)w=Aw—aw—cw—(wh(w))' (w*(c))w with D(L(c)) = D(A),

where (wh(w)) =d(wh(w))/dw. As is well known, the spectrum o(L(c)) of L(c)
consists of eigenvalues that lie on the real axis. Furthermore, we can prove the following
lemma.

LEMMA 2.2. For each ¢ > {,, all eigenvalues of L(c) are positive.

Proof. It suffices to follow the arguments used by Ito [11, Lemma A.1] (see also
Blat and Brown [2, Lemma 2.1]). ]

LeEmMA 2.3. For each ¢>{,, L(c) has a bounded inverse L(c)~'. Moreover,
L(c)'f>0 inQ

for all f (#0) e X satisfying f =0 almost everywhere in Q).

Proof. If follows from Lemma 2.2 that L(c) is invertible in X. For each nonnegative
fe X, put w=L(c)"'f and decompose it as w=w"—w~, where w —max{w 0} and
w~ = —min {w, 0}. Since w satisfies

(2.9) —dAw—{a+c+(wh(w))(w*(c)}w=f in Q
with w=0 on I', multiplying (2.9) by —w™ and integrating the resulting expression

over (), we can derive

0= —J fw~ dx=j [dIVw P —{a+c+(wh(w))' (w*(c))}(w™)*] dx
Q Q

=y, J (w")? dx,
Q

where v, is the least eigenvalue of L(c), which is positive by Lemma 2.2. Thus, w™ =0;
so that w= 0 almost everywhere in Q. The strict positivity of w in Q follows from the
strong maximum principle. 0

Finally, we state the dependence of w*(c) on ¢

LEmMA 2.4. (i) Lim,,,, w*(c) =0 uniformly in Q).

(ii) The mapping c > w*(c) is of class C'((¢,, ©); D(A)) and the Fréchet derivative
of w* with respect to c, which is denoted by w¥, satisfy

w¥(c)>0 inQ forc>{,.
For the proof, see [2, Lemma 2.2] or [11, Lemma A.3].

3. Spectral analysis. We first give existence and regularity results of global sol-
utions for (1.1)-(1.2) with nonnegative initial data.
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For p> n, set X={L?(Q)}, Y={W>(Q) N W"?(Q)}* and define a closed linear

operator A in X by
A
A(“) =( ‘“) for (“) eD(A)=Y,
v A,v v

where A,u=—d;Au and A,v=-—d,Av. Since —A generates an analytic semigroup

{exp (—=tA)},=¢ in X, the initial value problem for (1.1), (1.2) can be treated as that for
an abstract evolution equation (see § 2).

Then the global solvability theorem reads as follows.

PROPOSITION 3.1. Let u,, v, be nonnegative functions of class C(Q)). Then there
exists a unique solution (u,v) of (1.1), (1.2) with (u(0), v(0)) = (uo, vo) in the class
C ([0, %0); X) N C'((0, ©); D(A)). Moreover,

3.1) 0=u(x,t)=m, and O0=v(x t)=m,

Jor (x, t) e QA x[0, 00) with some positive constants m,, m,.
Proof. Since the local solvability and uniqueness can be derived in the standard
manner, to obtain the global solvability it suffices to show (3.1) (see, e.g., Rothe [19,

Thm. 1]). In view of the forms in (1.1), it is easy to see from the comparison theorem
that

3.2) u=0 and 0v=0
as long as the solution (u, v) exists. Hence, by (A.1),
(3.3) u, =d,Au+u(a+f(u,0)).

Since we can choose M, >0 satisfying a+f(M,,0)=0 by (A.3), application of the
comparison theorem to (3.3) yields

(3.4) u =max {|| 4o, Mo} =m,.
Therefore, because of (3.4) and (A.2), we can show
(3.5) v, =d,Av+v(b+g(m,, v)).
As in the derivation of (3.4), it follows from (3.5) that
3.6) v =max {|| vo||co, Np}=m,,

where N, is a positive constant satisfying b+ g(m,, N,) =0 (use (A.4)). Thus (3.1) is
derived from (3.2), (3.4), and (3.6). O

Usually, the asymptotic behavior of global solutions is closely related to the
stability analysis of the corresponding stationary problem. So we consider

3.7) —d\Au—au=uf(u,v) inQ,
(3.8) —d,Av—bv=vg(u,v) in Q,
3.9) u=0v=0 onT,

with additional condition
(3.10) u=0 and v=0 in Q.

Besides the trivial solution (0, 0), the stationary problem above may have solutions
of two different types; semitrivial solutions (u,0), (0, v) with u and v positive and
positive solution (u, v) with both components positive. The existence of semitrivial
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solutions follows from Proposition 2.1. Indeed, if we denote by A, (>0) the least
eigenvalue of

(3.11) —Au=Au in (), u=0 onT,

then Proposition 2.1, together with (A.1) and (A.3), yields the existence of a (unique)
positive function u*(a) satisfying

(3.12) —d,Au*—au* =u*f(u*,0) in Q, u*=0 onT,

for a> d,A; so that (u*(a), 0) clearly satisfies (3.7)-(3.10). Similarly, there is another
semitrivial solution (0, v*(b)) for b> d,A,, where v*(b) is the unique positive solution
of

(3.13) —d,Av* — bv* =0v*g(0, v*) in Q, v*=0 onT.

We now investigate the (local) stability of these trivial and semitrivial solutions
by examining the spectrum of the corresponding linearized operator. Recall that any
solution (4, ) of (3.7)-(3.9) is said to be asymptotically stable if the spectrum of the
linearized operator of (3.7)-(3.9) at (4, ©) lies in the right-hand side of the imaginary
axis. If there are some points in the spectrum with negative real parts, we say that
(4, ©) is unstable. (For details, see Kielhofer [13, Thms. 4.1, 4.2] or Henry [10, Thms.
5.1.1, 5.1.3].)

The linearized operator of (3.7)-(3.9) at (0, 0) is given by
A —a 0 )

0 Az‘b ’
whose spectrum consists of eigenvalues. Clearly, we have Theorem 3.2.

THEOREM 3.2. Set
(3.15) a*=d,Ay, and b*=d,\,.

The trivial solution is asymptotically stable if a <a* and b<b* and unstable if a> a*
or b> b*,

We proceed to the spectral analysis of the semitrivial solutions. The linearized

operator of (3.7)-(3.9) at (u*(a), 0) produces the closed operator L,(a, b) in X given
by

(3.14) Lo(a, b) = (

(3.16) Li(a, b)=(Ll(a) —u*(a)f,(u*(a), 0))

0 L2(a, b)

with D(L,)=Y, where L,(a)u=A,u—au—(uf),(u*(a),0)u and L,(a, b)v=
A,v—bv—g(u*(a),0)v. By the Riesz-Schauder theory, the spectrum o(L,(a, b)) of
L,(a, b) consists of real eigenvalues and

o(Ly(a, b)) = o(Li(a))Ua(Ly(a, b))

(cf. [11, Lemma 3.5] or [5, Thm. 2.7]). By Lemma 2.2, o(L,(a)) lies on the positive
real axis. Moreover, o(L,(a, b)) lies on the real axis and the least eigenvalue v,(a, b)
is characterized as

(3.17) vo(a, b)=b(a)—b,

with

(3.18)  b(a)=inf{d||Vo[3~(g(u*(a), 0)v, v)s; ve W"(Q), [|v].=1}.
Therefore, the stability of (u*(a), 0) is stated as follows.
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THEOREM 3.3. Define (a*, b*) by (3.15) and b by (3.18). Let a=a*. Then
(u*(a), 0) is asymptotically stable if b(a)> b and unstable if b(a) < b.

For later use we will collect some properties of b.

LEMMA 3.4. The function b defined by (3.18) satisfies the following:

(i) be C([a*,)) and b(a*) = b*.

(ii) be C'((a* )) and b'(a)<0.

(iii) If £,(0,0) <0, then lim,, . b'(a) = g.(0, 0)/£.(0, 0) <O.

Proof. We follow the idea used by Ito [11, Lemma A.4] to prove (i) and (ii). Since
b(a) is the least eigenvalue of

—d,Av—g(u*(a),0)v=pv in Q, v=0 onT,

we may take the corresponding eigenfunction ¢(a) such that ||¢(a)|,=1 and ¢(a)>0
in Q. The infimum in (3.18) is attained by (a), so that

ba+h)=d,||Vy(a+h)|3—(g(u*(a+h),00¢(a+h),y(a+h)),
(3.19) =d||Vy(a)|3— (g(u*(a+h),0)¢(a), y(a)),
=b(a) - ({g(u*(a+h),0)—g(u*(a),0)}y(a), ¥(a)),.
The similar inequality is valid if a and a+ h are exchanged. Hence
(3.20) |5(a+h)~B(a)|=||g(u*(a+h),0) - g(u*(a), 0)]l.

Thus the assertion of (i) follows from (3.20) and Lemma 2.4. To prove (ii), we observe
that (3.20), together with (ii) of Lemma 2.4, implies the local Lipschitz continuity of
b on (a*, ©). Hence making use of (3.19), divide b(a+h)—b(a) by h>0 (h<0) and
let h->0; then

(3:21) 5’(a)=—I g.(u*(a), 0)uf(a)y(a)® dx

for almost every a € (a*, ). In (3.21), a » u*(a) is continuously differentiable in C ()
by Lemma 2.4 and a > ¢/(a) is continuous in L*(Q2) by the perturbation result of Kato
[12, Chap. 4, § 5]. Thus the right-hand side of (3.21) is continuous in a, so that (3.21)
holds true for all ae(a*, o). In view of (A.2) and Lemma 2.4, the negativity of b’
easily follows from (3.21).

We prove (iii) with use of the identity (3.21). Let ¢, be the eigenfunction of (3.11)
corresponding to the least eigenvalue Ay; so that we can take ¢, satisfying ¢,> 0 in Q
and ||@o.=1. By (i) of Lemma 2.4, it is possible to show that

(3.22) lim g.(u*(a),0)=g,(0,0) in C(Q).

a->a

Moreover, by the result of Kato [12],
(3.23) lim ¢(a)=¢, in L*(Q).

It remains to derive the dependence of u¥ on a. Since u*(a) is the unique nontrivial
solution of (3.12) for a > a*, we make use of the local bifurcation theory of Crandall
and Rabinowitz [7, Lemma 1.1] to get an expression of u*(a) near a = a*. Set X = L?(Q)
and Y = W2P(Q) N\ W'?(Q). Define the operator F: Y X R~ X by

F(u; a)=A,u—au—uf(u,0).
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Clearly, F(0;a)=0 and F,(0;a*)=A,—a* so that dim N(A,—a*)=
codim R(A; —a*) =1, where the null space and range space of a linear operator L are
denoted by N(L) and R(L). Moreover,

Fua(o; a*)‘P0= —‘POE R(Al - a*)'

Therefore, applying Lemma 1.1 of [7], we obtain functions (w(s), a(s))e
C'([—50, So]; X X R), where s, is a sufficiently small number, with the following
properties: (a) w(0) =0 and a(0) = a*; (b) F(u(s), a(s)) =0, where u(s) = s(¢@o+ w(s))
and w(s) € R(A, —a™) N Y. The uniqueness of nontrivial solutions for (3.12) near a = a*
(see [7, Lemma 1.1]) implies

(3.24) u*(a(s)) = s(@o+ w(s)).
Now observe that
0=(F(s(pot w(s)); a(s)), o)2
=—s(a(s) —a*)—s((po+ w(s))f(s(po+ w(s)), 0), @o)>
because ||@of.=1 and w(s)e R(A, - a*). Hence

a(s)—a*=—((@o+ w(s))f(s(ot w(s)),0), ©o)2;

so
da 3
(3.25) =% (0 ="1.0,0]eoll3.
Since it follows from (3.24) and (3.25) that
(3.26) uk(a*) = @o/ a,(0) = —o(£.(0, 0) [l @ol13) 7,
identity (3.21), together with (3.22), (3.23), and (3.26), gives
5 8.(0,0)
lim b'(a)==——"—. O
2 P @=50,0

The stability analysis for (0, »*(b)) can be carried out in the same way as that for
(u*(a), 0). The linearized operator L,(a, b): X- X of (3.7)-(3.9) at (0, v*(b)) is given
by

Li(a, b)=( Ls(a, b) 0 )

—v*(b)g.(0, v*(b)) L4(b)
with D(Ly(a, b))=Y, where Li(a,b)u=Au—au—f(0,v*(b))u and L, b)v=
A,v—bv—(vg),(0, v*(b))v. The spectrum

o(Ly(a, b)) =0a(Ls(a, b)) U a(L4(D))

is composed of only real eigenvalues. By Lemma 2.2, the least eigenvalue of L,(b) is
positive. To characterize the least eigenvalue »;(a, b) of L;(a, b), we introduce the
following function (cf. (3.18)):

(3.27) a(b) =inf {d,||Vul|2— (f(0, v*(b))u, u),; ue W-(Q), ||lul,=1}.

Since v;(a, b) = @(b) — a, the stability of (0, v*(b)) reads as follows.
THEOREM 3.5. Let b= b*. If d is defined by (3.27), then (0, v*(b)) is asymptotically
stable if a < a(b) and unstable if a> a(b).
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Finally, we state some properties of the function a, which can be shown in the
same way as Lemma 3.4.
LEMMA 3.6. The function a defined by (3.27) satisfies
(i) ae C([b*, o)) and a(b*)=a*;
(ii) ae C'((b*,0)) and a'(b)>0;
(iii) If g,(0,0) <0, then

lim a'(b) = £.(0, 0)/g,(0,0)>0.
b-b*
4. Stability analysis via the comparison principle. In § 3 we discussed the linearized
stability of trivial and semitrivial steady-state solutions. More information about their
stability properties can be derived via the comparison principle.

Though Theorem 3.2 means merely the local stability of (0, 0), its global attractivity
holds in the following sense.

THEOREM 4.1. Ifa =a* am! b < b*, then every nonnegative solution of (1.1), (1.2)
converges to (0,0) uniformly in Q) as t > 00,
Proof. By the nonnegativity of u and (A.1),

u, =dAu+au+uf(u,0) in Qx(0,c0).
Let U be the solution of
U=dAU+aU+ Uf(U,0) inQx(0,0),
(4.1) U=0 on I'x (0, 00),
U(-,0)=u(-,0)=0 in Q.

The comparison theorem for parabolic equations implies 0=u = U and Proposition
2.1 ensures that U(-,0) - 0 uniformly in () as ¢ - co. Therefore,

(4.2) lim u(-,¢)=0 uniformly in x €.

t—>00
Because of (4.2) we can show that, for any & > 0, there exists T, such that
v, =d,Av+(b+e)v+vg(0,v) in QXx[T,, ).

Since b+ & = b* for sufficiently small &, Proposition 2.1, together with the comparison
theorem, enables us to show that

(4.3) lim v(-,¢)=0 uniformly in xeQ,

t—>00

as in the derivation of (4.2). Thus (4.2) and (4.3) yield the assertion. 0
Before studying the global attractivity of (u*(a), 0) or (0, v*(b)), we put some
additional conditions on f and g:

(A.5) f(0,v)= f(u,v) forall u,v=0,
(A.6) g(u,0)=g(u,v) forall u,v=0.

THEOREM 4.2. In addition to (A.1)-(A.4), assume (A.6). If a>a* and b(a)> b,
then every nonnegative solution (u, v) of (1.1), (1.2) with u(-,0) 0 satisfies

(4.4) lim (u(-, t), v(-, t)) =(u*(a),0) uniformly in Q.

t—>00
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Proof. We employ the same method, based on the comparison theorem, as that
used by Conway, Gardner, and Smoller [5, Thm. 2.3] (see also [4]). Note that the
solution U of (4.1) satisfies

lim U(-, t)=u*(a) uniformly in Q

t—>0o0
by Proposition 2.1. Therefore, in view of u = U, we can show that

(4.5) lim sup u(-, t)=u*(a) uniformly in Q.

This fact, together with (A.2) and (A.6), assures that, for any & > 0, there is T, such that
v, =d,Av+(b+¢e)v+ovg(u*(a),v)
=d,Av+(b+¢e)v+vg(u*(a),0)

in O x[T,, ). Here we recall that the least eigenvalue of —dzA—g(_u*(a),O) with
homogeneous Dirichlet condition is b(a) (see (3.18)). Since b+e<b(a) if €>0 is
sufficiently small, it follows from the comparison theorem that

(4.6) lim v(-, t)=0 uniformly in Q.

t>00

Having established (4.6), we return to the first equation of (1.1). For any & >0,
u=dAu+(a—e)u+uf(u,0) in Qx[T., )

with some T, > 0. If ¢ is sufficiently small so that d;A, < a — ¢, Proposition 2.1 enables

us to deduce that

4.7) liminfu(-, t)=u*(a—e¢) uniformly in Q.

t—>00

Letting £}0 in (4.7) and using (4.5), we have
(4.8) lim u(-, t)=u*(a) uniformly in Q.

t—>o0
Thus (4.6) and (4.8) accomplish the proof. 0
When (A.5) is assumed in place of (A.6), it is possible to show the global attractivity
of (0, v*(b)) along the same line as Theorem 4.2.
THEOREM 4.3. In addition to (A.1)-(A.4), assume (A.5). If b= b* and a(b)> a,
then every nonnegative solution of (1.1), (1.2) with v(-,0) # 0 satisfies
lim (u(-, t), v(+, t))=(0, v*(b)) uniformly in Q.
t—>00
Remark 4.1. We summarize our stability results of §§ 3 and 4 in the (a, b) parameter
space (see Fig. 1). Assume that (A.1)-(A.6) are imposed on f and g. (Observe that f
and g defined by (1.3) satisfy (A.1)-(A.6).) Theorems 4.1-4.3 ensure that (0,0),
(u*(a),0), and (0, v*(b)) become global attractors for (1.1), (1.2) when (a, b) lies in
regions I, I1, and III, respectively. Therefore, there are no positive steady states for
(a,b)e IUITUIIL This fact agrees with the result of Li [16], who has discussed
prey-predator systems by setting almost the same assumptions as (A.1)-(A.6). Finally,

we should say that, by Theorems 3.2, 3.3, and 3.5, trivial and semitrivial steady states
are unstable if (a, b) e IV.

5. Analysis of the stationary problem by bifurcation theory. In the subsequent
sections we study positive steady states for (1.1), (1.2). There are several results on
their existence; [1]-[3], [5], [8], [9], and [16]. Among them, Li [16, Thms. 1,2] (cf.
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Dancer [8], [9]) has established necessary and sufficient conditions for prey-predator
diffusion systems (similar to ours) by using the degree theory. According to his work,
it will be shown that, under assumptions (A.1)-(A.6), stationary problem (3.7)-(3.10)
has a positive solution if and only if all the trivial and semitrivial solutions are unstable;
that is, (a, b) satisfies a> a(b) and b> b(a). However, the stability of positive steady
states is still an open problem. We will discuss their stability with use of the bifurcation
theory, although most of the existence parts are already known.

It is now convenient to restate our preceding results from the standpoint of
bifurcation theory (see Fig. 1). When a (respectively, b) is regarded as a bifurcation
parameter, (u*(a), 0) (respectively, (0, v*(b))) appears as a primary bifurcation from
(0,0) at a=a* (respectively b=>b*) and the stability changes there. Moreover,
(u*(a), 0) and (0, v*(b)) lose their stability, when (a, b) crosses the C;-curve and the
C,-curve, respectively. Therefore, positive solutions of (3.7)-(3.9) will be realized as
secondary bifurcations from (u*(a), 0) or (0, v*(b)). See the works of Blat and Brown
[1]-[3] and Conway, Gardner, and Smoller [4], [5], where some bifurcation techniques
are used.

We first discuss the secondary bifurcation from (u*(a),0). Let a> a* be fixed
and regard b as a parameter. Define a nonlinear operator F: Yx R > X by

Au—au—
(5.1) F(U; b)=( = au = uf(u, ”)) for U=(“> cy.
A,v—bv—vg(u, v) v
Clearly, F(U*; b) =0, where U* =‘(u*(a), 0). As in the proof of Lemma 3.4, we employ
the results of Crandall and Rabinowitz [7] to show bifurcation at b= b(a). In what
follows, we sometimes write b in place of b(a). The Fréchet derivative of F(U; b)
with respect to U at (U, b) =(U¥*, b) is given by
(5‘2) FU(U*; 5)=Ll(aa 5),
where L;(a, b) is defined by (3.16). We gvill verify the assumptions of Lemma 1.1 of [7].
LEmMMA 5.1. (i) dim N(Fy(U*;b(a)))=1 and N(Fy(U*; b(a)))={'(¢1, ¢.)}
with ¢, <0, ¢,>0 in Q and | ¢,|,=1.
(ii) codim R(F,(U*; b(a)))=1. Moreover, '(h,, h,)e R(Fy(U*; b(a))) if and
only if (h,, ¢2)>=0.
(iii)
Fuo(U*; 5(a))(zl) & R(Fy(U*; b(a))).
2
Proof. In view of (5.2), we examine N(L,(a, b)) and R(L,(a, b)). Recall that zero
is the least eigenvalue of L,(a, b) (see (3.17)), so that dim N(Ll(_a, b)) =1 because of
the invertibility of L,(a) by Lemma 2.3. Let ‘(¢,, ¢,) € N(L,(a, b)). Then

Li(a)e,=u*(a)f,(u*(a),0)¢,, Ly(a, 5)‘P2=0-

Since ¢, does not change sign, we may take ¢, such that ¢,>0 in Q and |¢,|,=1.
By (A.1),

u*(a)f,(u*(a),0)p,<0 in Q,
which, together with Lemma 2.3, implies
¢1=Ly(a) ' (u*(a)f,(u*(a),0)¢,) <0 in Q.

Thus we have shown (i). _
If “(h,, h,) is in R(L,(a, b)), there must be a solution (u, v) of

Li(a)u-u*(a)f,(u*(a),0)v="h,,  Ly(a,b)vo=h,.
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It is well known that the second equation has a solution v if and only if (h,, ¢,) =0.
For such a solution v, the first equation has a unique solution u because of the
invertibility of L,(a). Thus (ii) has been proved.

Finally, we observe that

ruws(2)- ()

Hence the assertion of (iii) easily follows from (ii). 0

We are ready to prove the following bifurcation result.

THEOREM 5.2. In addition to (A.1)-(A.4), assume (A.6). Let a> a* be fixed. Then
there exists a positive number 8 such that, for every b e (b(a), b(a)+ 8), there is a solution
(u, v) of (3.7)-(3.10) with the following properties:

(a) u*(a)>u>0and v>0in Q.

(b) (u, v) is the only nontrivial solution of (3.7)-(3.10) near (u*(a), 0).

(¢) (u, v) is asymptotically stable.

Proof. We will prove this theorem along the same line as Conway, Gardner, and
Smoller [5, Thm. 3.5] by applying the bifurcation theory of Crandall and Rabinowitz
[7].

Because of Lemma 5.1, all the assumptions of Lemma 1.1 in [7] are satisfied, so
that there exist a positive number s, and continuously differentiable functions
"(wy, wy):(—5q, So)>Y and B:(—so, so) > R with the following properties:

(i) B(0)=0. )
(il) ‘(wi(s), wa(s)) € R(Ly(a, b)) and w,(0) = w,(0) =0.
(iii) If
u(s)=u*(a)+s(p+wi(s)), v(s) = s(@2+ wy(s)),
b(s)=b+B(s),

where ¢, , ¢, are given in Lemma 5.1, then F(U(s); b(s)) =0 with U(s) = "(u(s), v(s));
and

(iv) (U(s), b(s)) is the unique nontrivial solution of F(U; b) =0 in a neighbor-
hood of (U*, b).
This fact implies the existence of a nontrivial solution of (3.7)-(3.9) when (a, b) lies
near the C,-curve defined by b= b(a). Since ¢, <0 and ¢,>0 in Q by Lemma 5.1, it
follows from (5.3) that

u*(a)>u(s)>0 and v(s)>0 inQ

for sufficiently small s> 0.
As a next step, we will discuss the linearized stability of (u(s), v(s)). Let w(s)
denote the principal eigenvalue of F,(U(s); b(s)). According to Theorem 1.16 of [7],

lim {—sb'(s)(3v,/b)(a, b)/ w(s)} =1,

(5.3)

50
where v,(a, b) is defined by (3.17). Therefore,
(5.4) 7(s)=sB'(s)(1+0(1)) for sufficiently small s> 0.
We will show
(5.5) B'(0)>0

to see the asymptotic stability of (u(s), v(s)) for sufficiently small s> 0. (Moreover,
(5.5) tells us the direction of the bifurcation; b(s)>b for small s>0.) Now
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F(U(s); b(s)) =0 implies that
(5.6) Ly(a, b)v(s) — B(s)v(s) —v(s){g(u(s), v(s)) —g(u*(a), 0)} =0.

Since ¢,€ N(L,(a, b)) and (v(s), ¢2),=s by Lemma 5.1, taking the L*(Q)-inner
product of (5.4) with ¢, leads to

(5.7 B(s)=—((@2t+ wy(s)){g(u(s), v(s)) —g(u*(a), 0)}, ¢2),.

Differentiation of (5.7) with respect to s gives
(5.8) B'(0) = —I {g.(u*(a), 0)p, + g, (u*(a), 0) o} 3 dx.
Q

Thus (5.5) follows from (5.8) because ¢, <0 and ¢,>0by Lemma 5.1, g,(u*(a), 0) >0
by (A.2), and g,(u*(a), 0)=0 by (A.6).

The assertions of this theorem will be derived from the above results by regarding
b as a bifurcation parameter rather than s (use (5.5)). 0

The preceding argument is valid for studying the secondary bifurcation from
(0, v*(b)) at C,-curve defined by a=a(b). Let b> b* be fixed and regard a as a
bifurcation parameter. We define a mapping G:YxX R~ X by

- _(Aww—au—uf(u,v) _fu
G(V’a)—(sz—bv—vg(u,v)) for V—<v>eY.

Clearly, G(V*; a) =0 for all a=0 with V*="'(0, v*(b)). Correspondingly to Lemma
5.1, it is possible to show the following lemma.

LemMA 5.3. (i) dim N(Gy(V*;a(b)))=1 and N(G,(V*;a(b)))={"(¢, ¥,)}
with ¢,>0 and $,>0 in Q and ||¢,),=1.

(ii) codim R(Gy(V*;a(b)))=1. Moreover, ‘(h,, h,) € R(G,(V*; a(b))) if and
only if (hy, ¥,)2=0.

) Gu(vts a)(§') £ RGy (v alb)).
2

The following theorem can be shown in the same manner as Theorem 5.2 with
the use of Lemma 5.3.

THEOREM 5.4. In addition to (A.1)-(A.4), assume (A.5). Let b> b* be fixed. Then
there exists a positive number & such that, for every a e (a(b), a(b)+38)), there exists a
solution (i, D) of (3.7)-(3.10) that satisfies:

(a) u>0 and 5> v*(b) in Q.

(b) (&, ©) is the only nontrivial solution of (3.7)-(3.10) near (0, v*(b)).

(c) (4@, D) is asymptotically stable.

Sketch of proof. Owing to Lemma 5.3, the bifurcation theory of Crandall and
Rabinowitz yields the existence of a positive number s, and continuously differentiable
functions ‘(w,, w,): (—$o, So)>Y and a: (—so, o) > R satisfying (i) «(0)=0; (ii)
'(wi(s), wy(s)) € R(Gy(V*; @)) and w,(0) = w,(0)=0; and (iii) if

a(s)=s(twis)),  0(s)=0*(b)+s(Po+ wys)),
a(s)=a+a(s),
where ¢, and ¢, are as given in Lemma 5.3, then G(V(s); a(s)) =0 with V(s)=
‘(a(s), 0(s)). Therefore, in view of (iii), it is easy to show (a) because of the positivity

of ¢, and ¢,. In studying the asymptotic stability of (i (s), 0(s)), it is essential to know
the sign of «’(0). After some calculations, we can show that

(5.9) a'(0)= - L (£u(0, v*(£)) 1 +£,(0, v*(b))¢h2) ¢y} dx
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(cf. (5.8)). Hence (A.1), (A.5), and Lemma 5.3 enable us to see a'(0)>0, which
completes the proof. 0

Theorems 5.2 and 5.4 assure the existence, uniqueness, and stability of positive
solutions when (a, b) e IV lies in a neighborhood of C, or C, curve (see Fig. 1). To
study the general case, we follow the argument of Ito [11, Thm. 5.1] based on the
global bifurcation result of Rabinowitz [18] (see [1, Thm. 3.3]). Then it is possible to
show Theorem 5.5.

THEOREM 5.5. Assume (A.1)-(A.6) and let a> a* be fixed. Then there exists a
branch of positive solutions of (3.7)-(3.9) that bifurcates from (u*(a),0) at b= b(a)
and meets with (0, v*(b)) at b=(a) "(a), where (@)~" is the inverse function of a.

Thus we have obtained a fairly clear understanding of the set of solutions for
(3.7)-(3.10) and their stability properties. For example, consider the case a> a*.
Theorem 4.2 implies that (u*(a), 0) is a global attractor for (1.1), (1.2) if b<b(a). As
b becomes larger than b(a), (u*(a), 0) loses its stability, and a positive solution, which
is stable when b is near b(a), bifurcates from (u*(a),0) at b= b(a) (Theorem 5.2).
Such a positive solution exists for b(a) <b <(a) '(a) (Theorem 5.5), is stable when
b is near (a@)'(a), and becomes identical with (0, v*(b)) at b=(a) *(a) (Theorem
5.4). By Theorem 4.3, (0, v*(b)) is a global attractor for (1.1), (1.2) whenever b is
larger than (@) '(a).

6. Bifurcation from a double eigenvalue. In this section we discuss stability proper-
ties of positive solutions for (3.7)-(3.9) in the case when (a, b) € VI lies in a neighbor-
hood of (a*, b*) (= (d,Ao, d2)o)).

The operator Ly(a, b) defined by (3.14) has zero as a double eigenvalue for
(a, b) =(a*, b*). We will derive appropriate expressions of positive solutions by simul-
taneously regarding a, b as bifurcation parameters. Throughout this section we assume,
in addition to (A.1)-(A.6), that

(A7) £,(0,0)<0 and g,(0,0)<0.
Define a nonlinear mapping H:Y X R - X by
A, u—au—uf(u, v)) (u)
. ;a,b)= fi = .
(6.1) H(U; a, b) (sz—bv—vg(u,v) or U o eY

Then H(0; a, b)=0 for all a, b and Hy(0; a*, b*) =Ly(a*, b*). In what follows, we
simply write L, in place of Lo(a*, b*). Clearly, dim N(L,) = codim R(L,) =2. We can
take {®,, ®,} € N(L,) with

(6.2) D, = ((':)()) and &,= (2()),

where ¢, is the eigenfunction of (3.11) corresponding to A, and satisfies ¢,>0 in Q
and | @o||»= 1. Moreover,

h
(6.3) (hl> € R(L,) if and only if (hy, ¢o)2= (h2, ¢0).=0.
2

For U ="(u, v) X, we define
PU = (u, )P, + (v, ¢0)P,

and decompose X as X =X, + X, with X; = PX and X, = (I-P)X. Similarly, Y is decom-
pOSCd as Y = Yl +Y2 With Y] = PY and Y2 = (I—P)Y. Then Xl = Y] = N(Lo), X2 = R(Lo),
and Yz = R(Lo) n Y.
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We will look for solutions of H(U; a, b) =0 in the form
(6.4) U =s{cos o®,+sinw ®,+ W} with w="(w,, w,)eY,,
where s and w are parameters. Since positive solutions are concerned, we restrict w

to (0, 7/2). Let w € (0, 7/2) be fixed for the time being. We define a nonlinear mapping
K(W, a B;5):Y;XRXRXR->X by

K(W, a, B; s)=s "H(s(cos 0P, +sin o®,+ W); a*+a, b*+8)

a(pycos w+ wl))
=L,W-
° (ﬂ(cpo sin  +w,)

_ ((‘Po cos w + wy)f(4, 5))
(o sin w +w,)g (i, D)
for W="(w,, w,) with 4 =s(¢,cos w+w,) and ©=s(¢,sin w+w,). Clearly, K is a
C'-mapping from Y, X R X R X R to X satisfying K(0, 0, 0; 0) = 0. The Fréchet derivative
of K with respect to (W, a, B8) at (W, a, B, s) =(0, 0, 0, 0) is the linear mapping
(W, &, B)>LoW~ (& cos ©)®,~(f sin ©)®,

which is an isomorphism from Y,X RX R to X. Therefore, the Implicit Function
Theorem implies the existence of continuously differentiable functions
(W(s), a(s), ﬂ(s)), defined for sufficiently small |s|, that satisfy (i) W(0)=0, &(0)=
[3(0) 0 and (ii) K(W(s), a(s), ﬂ(s) s)=0. Hence, if we set

u(s) =s(go cos w+ w,(s), 0(s) = 5(¢o sin w + w,(s)),
a(s)=a*+a(s),  b(s)=b*+p(s),
then (0(s), a(s), 5(s)) with l~J(s)='(1Z(s), 0(s)) becomes a nontrivial solution of

H( U;a, b)= 0. Especially, since (Wi(s), ©0)»=0 for i=1,2, it follows from
H(U(s); d(s), b(s))=0 that

(6.5)

(6.6)

(6.7) d@(s) cos @ = —((po cos w +w,(s))f(i(s), 5(s)), @o)2,

(6.8) B(s) sin @ = — ((@o sin @ +W,(s))g(i(s), 5(s)), @o)a-

Differentiating (6.7) and (6.8) with respect to s, after some calculations we can derive
(6.9) @'(0) = —(£.(0, 0) cos @ + £,(0, 0) sin w)| o3,

(6.10) B'(0) = ~(£.(0,0) cos @+ £,(0, 0) sin ) | ¢oll3,

so that

. b(s)—-b* . B(s)
1 =1
i~ d(s)—a* o a(s)
_ 84(0,0) cos w+g,(0,0) sin w
£.(0,0) cos w+£,(0,0) sin w
If the right-hand side of (6.11) is denoted by I(w), then I(w) is an increasing function
of we (0, 77/2) such that

(6.11)

2.(0,0) . _2(0,0)
(6.12) lim i(w)="0,0) 2nd JHim He)="0%)

Now we recall some properties of C;- and C,-curves near (a*, b*). The C, curve,
defined by b= b(a), satisfies

db £.(0,0)
(6.13) JLT* da @)= £.(0,0)
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by Lemma 3.4(iii), and the C,-curve, defined by a = a(b), satisfies

@7 80,0
(6.14) i 7500
by Lemma 3.6(iii). In view of (6.12)-(6.14), we can conclude that, for each w € (0, 7/2)
sufficiently close to zero, the solution (#é(s), 6(s)) constructed as above coincides with
the positive solution bifurcating from (u*(a), 0) at the C;-curve (see Theorem 5.2);
and that, for each w € (0, w/2) sufficiently close to /2, (u(s), v(s)) coincides with
the positive solution bifurcating from (0, v*(b)) at the C,-curve (see Theorem 5.4).
Thus we may see that the expression (6.6), for sufficiently small s> 0, represents a
branch of positive solutions of (3.7)-(3.10) that connects the bifurcating positive
solution from the C;-curve with that from the C,-curve.

We will discuss the asymptotic stability of (i#(s), 6(s)) by the spectral analysis for
Hy( U (s); d(s), 5(s)) along the idea of [6], [7]. Observe that the principal eigenvalue
of Hy(U(0); d(0), b(0)) =L, is zero with multiplicity 2. Hence, it suffices to examine
the behavior near s =0 for (possibly two) eigenvalues {(s) such that

(6.15) Hy (U(s); d(s), b(s) U=¢(s)U
with £(0) =0. We will look for eigenfunctions U in the form
(6.16) U=¢1+P¢)2+M We Yz,

where p and W are to be determined later. Substitution of (6.16) into (6.15) yields the
following equivalent problem:

(6.17) LOW—M(s)W—(I—P)N(s)(d>1+p<1>2+ W)—¢WwW =0,
(6.18) —&(s) ~ (N(s)(®,+ pD,+ W), D,),~ £ =0,
(6.19) —B(s)p — (N(s)(®, + pD,+ W), ®,),— {p =0,
where
_fa(s) 0
M(s) = ( 0 ﬁ(s))’

N(s) =( (uf)u(f(S), 5~(S)) (uf)v('Z(s), f(S))>.
(vg)u(i(s)), 5(s))  (vg),(d(s), B(s))

By (6.9) and (6.10),
@ (s)=—s(£.(0,0) cos @+ £,(0, 0) sin @) @3+ 0(s),
B(s) =—5(g.(0,0) cos w + g,(0, 0) sin ®) | o||3+ 0(s),
for sufficiently small s =0. Moreover, some calculations give

(N(s)®;, @), = 5(2£.(0, 0) cos @+ £,(0, 0) sin w) || ofl3+ 0(s),

(N(5)D,, 1), = 5£,(0, 0) cos @ @o|l3+0(s),

(N(5)®,, @), = 58,(0, 0) sin w || poll3+ 0(s),

(N(5)®>, ®2), = 5(£.(0, 0) cos w +2g,(0, 0) sin w)||pofl3+ 0(s).

We first solve (W, ¢) from (6.17) and (6.18) as functions of s and p. From the Implicit
Function Theorem there exist continuously differentiable functions (W(s; p), {(s; p)),
defined for small s =0, with the following properties:
(i) (W(0; p), £(0; p))=(0,0);
(ii) (W(s; p), {(s; p)) satisfies (6.17) and (6.18);
(iii) | W(s; p)lly,= Cs(1+|p|) and |{(s; p)|= Cs(1+|p|) with some C > 0.

(6.20)

(6.21)
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Therefore, it follows from (6.18), with use of (6.20) and (6.21), that
{(s; p) = =sp(£,(0,0) cos @] @o||3+ (1))
=5(£.(0,0) cos || goll3+ o(1)).

Moreover, since (W(s; p), {(s; p)) must satisfy (6.19), we are led to the following
equation:

(6.22)

0=—{(s; PP~ B(s)p ~ (N(5)(®1+ p®2+ W(s; p)), 2)s
= 5p*{£,(0, 0) cos w||poll3+0(1)}
+5p{£.(0, 0) cos @ ¢oll3 — £.(0, 0) sin w || ¢o[|3+ 0(1)}
— 5{2.(0,0) sin w||poll3+ o(1)}.
Hence,
P*{£,(0,0) cos w+ o(1)}+ p{£,(0, 0) cos @ — g,(0, 0) sin w + 0(1)}
—{8.(0,0) sin @ +0(1)} =0,
so that we can find two continuous functions p.(s) such that
P=(s)=(2/,(0, 0) cos @) '[(£.(0, 0) sin & —£,(0, 0) cos w)
(6.23) +{(f£.(0, 0) cos ® — g,(0, 0) sin w)?
+4f£,(0,0)g,(0, 0) sin w cos w}?]+ o(1).
Substitution of (6.23) into (6.22) gives two eigenvalues ¢.(s) such that
£.(s)=-2""s[£.(0,0) cos w+g,(0, 0) sin w
+{(f£.(0, 0) cos ® — g,(0, 0) sin w)?
+4f£,(0,0)g,(0, 0) sin @ cos ®}"/*]+ o(s).

Since it is easy to see Re {.(s)>0 for sufficiently small s>0, the spectrum of
H,(U(s); d(s), b(s)) lies in the right half-plane of C. Thus we have shown the following
result.

THEOREM 6.1. If (a, b) €1V lies in a neighborhood of (a*, b*), then there exists a
solution of (3.7)-(3.10), which is positive and asymptotically stable.

Remark 6.1. If we take f and g of the form (1.3), then all assumptions (A.1)-(A.7)
are fulfilled. Therefore, our results can be summarized as in § 1 (see Fig. 1) and improve
on those of Blat and Brown [1]. Especially, the stability properties of the trivial and
semitrivial steady-state solutions are completely determined.

Remark 6.2. Our stability analysis developed in this paper is valid with slight
modification even if some of (A.1)-(A.7) are replaced by other suitable conditions.
For example, it is possible to study the stability of positive steady states for reaction-
diffusion systems such as the Holling-Tanner model (see [2]) or the competition model.
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PATTERN FORMATION IN HETEROGENEOUS
REACTION-DIFFUSION-ADVECTION SYSTEMS
WITH AN APPLICATION TO POPULATION DYNAMICS*

S.-I. EIf AND M. MIMURAf}

Abstract. Heterogeneous reaction-diffusion-advection equations are proposed for studying pattern
formation due to spatial heterogeneity. The equations contain a small parameter ¢, indicating the ratio of
the diffusion and advection rates and the reaction rate. Two-timing methods in the limit € | 0 make it possible
to reduce the original partial differential equation problem to the approximating ordinary differential equation
problem, so that asymptotic states of solutions can be investigated. As an application to population dynamics,
population models of the Lotka-Volterra type are considered for studying the effect of spatial heterogeneity
on development of spatial and temporal distributions of individuals.

Key words. pattern formation due to heterogeneities, two-timing method

AMS(MOS) subject classifications. 34A05, 92A15

1. Imtroduction. To theoretically understand spatial and temporal distributions of
ecological populations, there have been proposed a large number of mathematical
models that essentially include two terms, such as dispersal and growth and/or death.
As one of these models, we have the following reaction-diffusion-advection system:

(1.1) z—1:+div1=f(u), >0, xeq,

where

u= (ula Uy, -, un), f(u) = (.fl(u)’.fZ(u)a e ,.f;l(u))’
J=J(u)=—-(d,Vu,+u,Ve,, d,Vu,+u,Ve,,---,d,Vu,+u,Ve,),

and Q is a bounded domain in R™. Here u; is the population density of the ith species
at time ¢t and position x, with the diffusion rate d;, the tactic advection Ve;, and the
growth term f;. We conveniently write (d,, d,, -+, d,) and (e;, e,,- -+, e,) as d and
e, respectively. Usually d, e, and f depend on ¢, x, and u. The flux J consists of two
dispersal processes: the normal random movement of individuals, and the directed
movement toward the favorable region (or, on the contrary, from the unfavorable one).
If e is constant, namely, if the advection term is absent, J is reduced to the usual
diffusive flux. The boundary condition to (1.1) is

(1.2) (v, )=0,, t>0, xe€dQ

where (,) is an inner product, » is the outward normal vector on the boundary 4},
and 0, is the n-dimensional zero vector. This condition ecologically implies that there
is no population flow through the boundary 9Q.

The scalar case of (1.1), (1.2) (n=1) has been widely investigated when the
advection term is absent and the growth term f depends only on u. The resulting
problem of (1.1), (1.2) is

(1.3) glt‘=div dx)Vu)+f(u), >0, xeQ

* Received by the editors September 6, 1988; accepted for publication (in revised form) March 13, 1989.
T Department of Mathematics, Hiroshima University, Hiroshima 730, Japan.
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with the boundary condition
J

(1.4) —E=0, t>0, xeo.
v

For (1.3), (1.4), there are interesting results on existence, stability and bifurcation
properties of nonconstant stationary solutions [1], [10], [11], [14]-[16], [22], [33],
[39]. The most noteworthy result is that when the domain () is convex, any stable
nonconstant stationary solutions do not exist if d is constant, but possibly exist due
to suitable heterogeneities of d(x). In application points of view, a class of equations
such as (1.1) has been discussed by various investigators in population genetics [7], [8],
in population dynamics [12], [25], [26], [29] and in neurobiology [20], [30], [31].
To our knowledge, there has not yet been any full and systematic analysis for the
system of equations of (1.1) (n=2) to study the effect of spatial heterogeneity on
solutions, except for several works including [13],[37]. Under such circumstances,
Shigesada [34] has dealt with the extreme case, where the rate of dispersal is sufficiently
large compared with that of growth. This restriction is required by the ecological
situation such that the dispersal processes take place daily, while the growth process
takes place only once or twice a year. Under this assumption, (1.1) is written as

0
(1.1), 5’;‘+div1=sf, >0, xeQ

with a small parameter ¢. By using the two-time-scale (two-timing) method, approximat-
ing ordinary differential equations can be formally derived from (1.1),, (1.2) as £}0
[34]. Although this reduction of partial differential equations (PDEs) to ordinary
differential equations (ODEs) is formal, we can obtain much information on the time
development of solutions of (1.1).,(1.2) by studying the corresponding ODEs.
Recently, Ei and Mimura [5] and Ei [4] have shown that this reduction is valid for
all t upto O(1/¢), and that in some situations it is valid for all ¢ € [0, ). Such reduction
methods for infinite-dimensional dynamical systems to finite-dimensional dynamical
systems are among the most recent interesting topics in the analysis of dynamical
systems (see [2] and [9], for instance).

Let us show one population model equation, described by (1.1),, (1.2), which
represents competition between two species in the one-dimensional heterogeneous
habitat. It is given by

ou; 9 ou a U+ Biu
_1=_(dl__1+ulél>+8(,l_w)ub

at  9x 9x K,
(1.5), B+

8u2 0 8u2 . 2Uy T U,

—=—\d,—+ + e

at  ox ( 2 ox u2e2> ¢ (rz K, )uz’

t>0, xeQ=(0,1)
with
u; R .

(1.6) d,-a—x+u,-e,-=0, t>0, xedQ (i=1,2),

where ¢, =(de;/dx) (i=1,2) and (r, r,) is the intrinsic growth rate, (a;, a,) and
(B, B2) are, respectively, the intraspecific and interspecific competition rates between
the two species, and (K, K,) is the carrying capacity. Here we assume that all the
parameters are positive constants, leaving e; and K; (i =1, 2) to be functions of x. We
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specify that K;(x) (i=1,2) be humped as shown in Fig. 1, where x; is the maximum
point of K;(x) (i=1, 2), and consider the effect of the heterogeneities of K;(x) on the
stability of spatial distributions of the two competing species. To do so, we introduce
one parameter 6 = x, — X, that indicates the distance between the most favorable regions
of the two competing species. We assume that e; satisfies

e;(x) =—vylog K;(x)

with a positive constant y (i =1, 2). This relation implies that each species tends to
migrate toward the higher gradient of its carrying capacity in (). This requirement
seems to be phenomenologically reasonable. We show numerically the time develop-
ment of (u,, u,) of (1.5)., (1.6) for the same initial distributions. When 6 =0, u, exists
while u, is extinct (Fig. 2(a)). When 6 =0.2, u, exists while u, is extinct (Fig. 2(b)).
On the other hand, when 6 = 0.4, the situation changes so that u; and u, can coexist
(Fig. 2(c)). These simulations suggest that stable spatial distributions of the competing
species strongly depend on the heterogeneous carrying capacities. Mathematically
speaking, bifurcation phenomena may possibly occur when 6 varies.

Motivated by these phenomena, we are interested in pattern formation of solutions
of (1.1),, (1.2). Especially, we study the dependency of spatial heterogeneities of J
and f on solutions.

In § 2, we apply the two-timing method to the PDE problem (1.1),,(1.2) and
derive the approximating ODE problem ((2.8), (2.9)) in the limit & | 0. The validity of
this method is also shown. In § 3, we study existence and stability problems of stationary
solutions as well as periodic solutions of (1.1),, (1.2). We emphasize here that not only
existence but also stability of such solutions of the PDE problem generically inherit
from those of the approximating ODE problem. In § 4, we give proofs of the theorems
shown in § 3. Finally, in § 5, as an application of our procedure, we study the qualitative
behavior of solutions of the specified model (1.5),,(1.6) when 6 varies. Further
application to population models with spatially heterogeneous environments will be
reported in [6].

2. Reduction of PDE problems to the approximating ODE problems. In this section,
we apply the two-timing method ([33], for instance) to the following initial boundary
value problem to (1.1), with a small parameter &:

(2.1), %—?+div]=sf(x,u), t>0, xeQ,
(2.2) (v, J)=0,, t>0, xed,
(2.3) u(0,x)=£(x), xe€Q,
K, (X) K,(x)
X
X X3

Fi1G. 1. Graph of heterogeneous carrying capacity K; (i=1,2).
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(b)

(©
FIG. 2. Time development of solutions of (1.5),,(1.6) with the same initial condition for the suitably
specified parameters (see (4.5), (4.6) and £ =0.1) when 6 varies: (a) 6=0, (b) 6=0.2, (c) 6 =0.4. In each
figure, bold lines denote the functional forms of K (x).

where ¢=(&,, &, , &), Q is a bounded domain in R™ with sufficiently smooth
boundary 3(), and e and f are smooth functions in every argument. Here we assume that

(A) d is a positive constant and e is a function of x only.

When ¢ is sufficiently small, namely, when the dispersal proceeds much faster than
the dynamics, we can imagine that the spatial distributions of individuals are governed
by the dispersal process as the initial stage and then are followed by the dynamical
process as the second stage. Such time development of solutions requires us to introduce
two different timescales ¢t and 7 (=&t). We now attempt to find solutions of (2.1),, (2.2)
in the form

2.4) u(t, x; €)= uy(t, 7, x) + eu,(t, 7, x) + O(?).
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With the relation 8/9t =49/dt+ &(8/d7), inserting (2.4) into (2.1).-(2.3) and equating
coefficients of like powers of &, we obtain

d

a—tuo+divJO=0, t>0, xe€(,
(2.5)

(r,J)=0,, t>0, xed,

where J, = J(u,). Similarly,

d d
—uy+— upt+divJ,=f(x, uy), t>0, xe€Q,
at aT
(2.6)

(r,J)=0,, t>0, xe€3Q,
where J;=J(u,). Let ¢(x) be the stationary solution of (2.5) with [, ¢(x) dx=1,,
where 1, is the n-dimensional vector whose components are all 1. Then we find that
there is a function U(7)=(U,, U,, * + -, U,)(7) such that

27 lim ug(t, 7, x) = U(7) - ¢(x)

for a uniquely determined ¢. Here, for x =(x,, X, -+, x,) and y=(y1,¥2," * ", ¥n)»
x -y means the vector (x,y,, X,¥2," * *, X,Vn). Similarly, V- x means the set {v-xe
R"|ve V}for xeR" and a set V in R". Here U(7) is determined as follows. Integrating
(2.6) over ), we have
(2.8) 9 J u,(t, 7, x) dx+ig= [ f(x, up(t, 7, x)) dx.

at Jo dr Jo
Suppose that for any fixed 7, u,(t, 7, x) is bounded for all t>0, or equivalently,
3/at IQ u,(t, 7, x)dx—>0 as t->o0 (Ei [4]). Then, when t->o0c0, (2.8) reduces to the
following ODE of U only:
(2.9), d—U=F(U), >0,

dr

where F(U)= [, f(x, U- ¢(x)) dx=(F,(U), Fy(U), - - -, F,(U)). Since /ot ], "
uo(t, 7, x) dx =0, by (2.5), we have |, uo(0, 7, x) dx = U(7). Therefore, by u,(0, 0, x) =
£(x), the initial condition to (2.9), is

(2.9), U)= J &(x) dx.
Q

Thus the initial value problem for U(7) is formulated as (2.9).

Remark 2.1. If (2.7) is valid, the spatial and temporal distributions of solutions
of (2.1).-(2.3) for large time ¢ could be governed by ¢(x) and U(7), respectively.

Remark 2.2. If e;(x) are all constant, that is, if Ve;(x)=0, then ¢;(x)=1/|{], so
that F,(U) =1/|Q| |, fi(x, Uy/|Q, - - -, U,/|Q]) dx. This case has already been discussed
by Conway, Hoff, and Smoller [3], Yu [37], and Hale [13].

We omit the construction of uy(t, 7, x), because it is shown in Ei [4]. However,
we should note here that it is not unique. One explicit form is uy(t, 7, x) =
w(t, x)+ U(7) - ¢(x), where w(t, x) is the solution of

‘Z—’:+div1(w) ~0,, t>0, xeQ,
(2.10)

w(0, x)=§(x)—j &(x) dx- o(x), x e ).
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Next we briefly mention the validity of uy(¢, 7, x) as an approximation to the exact
solution u(t, x; €) of (2.1).-(2.3). We first introduce some notation. Let C°(Q; R") be
the Banach space consisting of all bounded continuous functions over () with the norm
[ullo=supxeq [u(x)| for ue C(Q;R") and dist {V;, Vo} =inf {||x —yllo|x€ Vi, y € V2}
for two closed sets V;, V, in C°Q;R"). Similarly, C*(Q;R") denotes the Banach
space consisting of all k-times continuously differentiable functions over € with the
norm ||ul|, = ZLO SUpPyea | D'u(x)|. When a finite-dimensional space can be considered
as a subspace of C°(Q); R"), we identify the Euclidean norm of the finite-dimensional
space with the restriction of |-||, to the space, say |-|, because all norms of a
finite-dimensional space are equivalent to each other. Similarly, we use the same symbol
dist {V;, V,} even if V| and V, are subsets of the finite-dimensional space.

Let w(7; E) be a solution of (2.9); with the initial condition

(2.11) U(0)=EeR".

DEerINITION. We call a closed bounded set I" in R" an exponentially stable attractor
of 7 if there exist an open bounded set V (=I') in R” and constants My;>0, a >0
such that

dist (7 (7; £€),T)= M, e *" dist (¢ T)

for any ¢£€ V and any 7> 0.

THeOREM 2.1 [4]). If w(7; Iﬂ &(x) dx) converges, as T—> 0, to some exponentially
stable attractor T, then there exist constants €, >0 and C,> 0 such that for any ¢ € (0, &,]
a solution of (2.1).-(2.3) u(t, x; €) exists for all t and

diSt {u(ta s 8)5 r- gD(’)}é C18

for sufficiently large t.

Theorem 2.1 indicates that if the initial value Iﬂ &(x) dx of (2.9), is contained in
the attractive region of ', then u(¢, - ; £) eventually enters an e-neighborhood of I" - ¢ ()
in C°(Q; R").

As a special case, if I' consists of either only one equilibrium or only one periodic
orbit of (2.9),, Theorem 2.1 can be stated as follows.

COROLLARY 2.1 [4]. In addition to the assumptions of Theorem 2.1, assume that
I is an equilibrium of (2.9),. Then there exist constants £,>0 and C,> 0 such that

”u(t’ ‘s 8)_u0(ta Sta .)lloé C18

uniformly for any € € (0, €,] and any t€[0, ).

COROLLARY 2.2 [4]. In addition to the assumptions of Theorem 2.1, assume that
I is a periodic orbit of (2.9),. Then, there exist constants ¢,>0, n€(0,1), and C;>0
such that

dist {u(t, 5 e), U ug(s, s, -)} =Ce"
s=0

uniformly for any € € (0, £,] and any t €[0, ).

The results above indicate that the solution u(t, x; ) of (2.1).-(2.3) asymptotically
enters an e-neighborhood of the lowest approximation uy(¢, €t, x) in suitable function
spaces. However, these do not reveal the behavior of the solution in that neighborhood.
That is, even if I' consists of a unique periodic orbit, for instance, we cannot say
whether (2.1),, (2.2) also has a unique periodic solution such that the solution u(¢, x; £)
tends to it as ¢ - 00,
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In the next section, we study the relation between the asymptotic states of solutions
of (2.9) and (2.1),, (2.2) when ¢ is sufficiently small.

3. Asymptotic states of u(z, x; £). In this section, to study asymptotic states of
u(t,-; ) of (2.1),, (2.2), we are concerned with the existence and stability of stationary
solutions as well as periodic solutions.

DEFINITION. Let 7, and m, ={m,(7)} be an equilibrium and a periodic orbit of
(2.9),, respectively. Consider the linearized equation of (2.9), about 7, or m,:

(3'1) g)_) = FUy’

T
where Fy, =dF/dU. We call 7, a nondegenerate equilibrium if Fy(7.) has no zero
eigenvalue, and call m, a nondegenerate periodic orbit if the characteristic multiplier
1 is an isolated simple eigenvalue of the period map of (3.1).

TueOREM 3.1. If w, is a nondegenerate equilibrium of (2.9),, there is a constant
£0>0 such that (2.1),, (2.2) has a unique stationary solution ii(x; ) for |e| < e, which
satisfies (- ; €) € C((—¢o, £0); C°(Q;R")) and lim,, ii(x; €) = m, - ¢(x) uniformly in
xe().

THEOREM 3.2. Suppose that m, is a nondegenerate equilibrium of (2.9), and that
i( 3 £) is a unique stationary solution associated with m, as shown in Theorem 3.1. Let
L, be a linearized operator of (2.1),, (2.2) about u(-; €). Then there exist £,>0, C;>0,
and a > 0 such that the spectrum of L, consists of two spectral sets o,(g), 0,(&) satisfying
g(e)c{reC|[A|=Ce} and ox(e)={A eC|Re A <—a} for 0<e=¢,. Forany A(g) €
o,(€), there is some Ao€ o(Fy(m.)) such that lim,, A(g)/e = A, and its converse also
holds, where o(Fy(m,)) denotes the spectrum of Fy(w.).

For this theorem, (i) L, has n eigenvalues in an e-neighborhood of the origin;
(ii) by the suitable e-scaling, these eigenvalues coincide with those of Fy(.).

TueOREM 3.3. If the nondegenerate equilibrium ., is asymptotically stable, i(x; ¢)
associated with m, is also asymptotically stable for sufficiently small € > 0. Moreover, it
has an attractive region V, which is independent of ¢, in C°(Q; R").

Similar results hold for the case of the nondegenerate periodic orbit.

THEOREM 3.4. If m, is a nondegenerate periodic orbit with period 7, there is £,> 0

such that (2.1),, (2.2) has a periodic solution P(t, x; €) with period t, for 0 < e < g, which
satisfies

li&)‘l dist{P(t,"; €), m,- ¢(-)}=0 for0=t=t,
lim gl, = T79.
&40

THEOREM 3.5. Suppose that w, is a nondegenerate periodic orbit and that P(t, x; ¢€)
is a periodic solution of (2.1)., (2.2) associated with w, as shown in Theorem 3.4. Let
U.(t) be a period map of P(t,x; €) in (2.1),, (2.2). Then, there exist £,>0 and C;>0
(i=1,2,3) such that the spectrum of U,(t) consists of two spectral sets o,(€), o,(€)
satisfying o1(e) = {A e C|C;=|A| = C,} and o5(g) = {A € C||A| = C3¢} for 0< e = ¢,. For
any A(g) € o,(¢), there is some characteristic multiplier A, of (3.1) such that lim, o A(e) =
Ao and its converse also holds.

Remark 3.1. The spectrum of U, (t) is independent of ¢ because of the compactness
of U,(t).

THEOREM 3.6. Assume 1, is nondegenerate and the spectrum of the period map of
(3.1) (except 1) lies in {|A| <8} for some 6 <1. Then P(t, x; €) associated with 1, is



PATTERNS IN REACTION-DIFFUSION-ADVECTION SYSTEMS 353

orbitally asymptotically stable for sufficiently small ¢ > 0. Moreover, it has an attractive
region V that is independent of ¢, in C°(Q; R").

These results imply that asymptotic states of solutions of PDE problems derive
from those of the approximating ODE problems except for degenerate cases. Con-
sequently, the asymptotic behavior of solutions of the PDE problem can be generically
investigated by studying the ODE problems.

Let 6 be a parameter indicating the heterogeneities of circumstances for individuals
in ecology. Then problem (2.1),, (2.2) is written as

d
3.2), a—:+div J(u; 0)=¢f(x,u;0), t>0, xeQ,

3.3) (v, J(u; ))=0,, t>0, xeoQ,

and the stationary solution ¢(x) of (2.5) as ¢(x; 0).
The approximating ODE becomes

(3.4) av_ F(U;8), 7>0
dr

with a parameter 6. For a study of pattern formation due to spatial inhomogeneity,
we are interested in bifurcation problems of (3.2),, (3.3) with respect to 6. Suppose
that solution structures of (3.4) can be globally analyzed with respect to 6. Then
Theorems 3.1-3.6 imply that the regular (i.e., nondegenerate) branch for 6 of (3.4)
extends to that of the PDE problem (3.2),, (3.3). However, we should note that these
theorems do not give any information to degenerate cases such as bifurcation points
or limiting points. It is expected that the global picture of asymptotic states for PDE
problems will be generically deformed from that of associated ODE problems. These
imperfection problems are now in progress.

4. Proofs. Let B be the Banach space C°(Q; R") with sup-norm |- ||, and let A
be the operator defined by Au=-divJ(u) with domain D(A)=
{ue W>N*(Q;R")|Auec B and (v, J(u))=0, on xeoQ}. £(B) denotes the Banach
space of bounded linear operators from B into itself with operator norm |- ||. Then A
is a generator of an analytic semigroup in B with the spectrum o(A)=
{0=A¢>A;>A,>- - -} (Stewart [36]), Ker A=R" - ¢, and the projection Q: B—> Ker A
is given by Qu=j'Q u(x) dx- ¢ for ue B. Under this notation, F(U) in (2.9), is
represented by

(4.1) F(U) ¢(-)=0Qf(-,U-¢(-)) for UeR"

and problem (2.1)., (2.2), (2.3) is written as the initial value problem in B:
%=Au+ef(u), >0,

(4.2)
u(0)=¢

where f(u)(-) denotes f(-, u), so that f(u) is a smooth function from B into itself.
Here we give other notation used in this section: o(%) denotes the spectrum of £ if
&£ is a closed operator in B; Id is the identity in B; P=1d - B; B,= QB; B,= PB; I,
is the identity in B; (i=1,2), respectively; E is a unit matrix in R"; M and a are
constants such that ||e*P||=Me ™ for t=0; C and C; (i=1,2,---) are constants
independent of sufficiently small & > 0.
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Proof of Theorem 3.1. The stationary problem (2.1), (2.2) is written as

(43) 0=Au+sef(u).
We define u; and u, by u, = Qu and u, = Pu, and we decompose (4.3) into
(4.4) 0= Qf(u,+u,), 0= Au,+ ePf(u,+u,).

By (4.1), the nondegeneracy of =, is equivalent to det (Qf, (7. - ¢)| 5,) # 0, so that by
the standard Lyapunov-Schmidt method, we see that (4.4) has a solution (i,(g), #,(g))
with (,(0), i#,(0))= (7. ¢,0) (see Theorem 3 of Ei and Mimura [5], for
instance). O

Proof of Theorem 3.2. Let ii(e)(-)=1i(-; €) (Je|=e,) be the stationary solution
of (4.3) satisfying @(0)(:) = =, (). Then the linearized operator L, of (4.2) about
i(e) is described by L, = A+ ¢f,(ii(e)). Consider the equation
(4.5) A-L)u=v

for A €eC and v e B. Putting u, = Qu, u,= Pu and v, = Qu, v,= Pv, we have a pair of
equations equivalent to (4.5):

(4.6), Auy— eQf, (i(e))(u +uy) = v,

(4.6), Auy— Ayu, — ePf,(4(e)) (u +uy) = vy,

where A, is the operator that is restricted to B,, which is invertible in B,. Let « be a

constant satisfying 0> —a > A,. Then, if A satisfies Re A > —a and & > 0 is sufficiently
small, (4.6), is solvable on u, and it is written as
(4.7) u = G(A, €)(v,+ ePf,(ii(¢))),
where G(A, ) =(AL,— A,—&Pf,(ii(¢))) ~". Substituting (4.7) into (4.6),, we have
(4.8) {AL—eQf.(i(e))(I+eG(A, &) Pf,((e)))}uy = v+ eQf.(ii(£)) G(A, €)v,.
Since @(e) and G,(A, €) are uniformly bounded for sufficiently small € >0, there is a
constant C,>0 such that ||Qf,(i(e))(I;+ eG,(A, €)Pf,(ii(g)))|| = C,. Hence, if A
satisfies |A|> C,e for some C,> C, and sufficiently small £>0, (4.8) is solvable on
u,. Consequently, there are positive constants C, and &, such that if A satisfies |A|= C,&
and Re A > —a for 0< e =¢,, A is an element of p(L,). This implies that the spectrum
o(L,) consists of two spectral sets o;(¢), (&) such that o,(¢) = {A e C||A|= C,¢} and
oy(e)c{reC|Re A <-a}.

We consider the spectrum contained in o,(¢) for 0<e=g,. Since L, has the
compact resolvent, o,(g) consists only of isolated eigenvalues with finite multiplicity.
Putting A'= /¢ for A € oy(¢), we consider the following eigenvalue problem:

(eA'—L,)u=0,
which is equivalent to
(4.9), Auy— Qf((e))(uy +uy) =0,
(4.9), eA'uy — Ayu, — ePf,((e))(uy +uy) =0,
where u; = Qu and u, = Pu. Since (4.9), is solvable on u,, we obtain
(4.10) u,=eGy(A', e) Pf,(a(e))uy,

where G,(A', &) = (eA'l,— A, — ePf,(ii(g))) . After substituting (4.10) into (4.9),, we
see Gi(A', e)u; =0, where Gi(A', e)={A'I,- Qf,(ii(e))(I,+ eG,()\', &) Pf,(ii(e)))}.
Here G;(A’, £) is a matrix in the finite-dimensional space B, so that it suffices to
investigate zeros of g.(A’)=det G5(A’,¢). Let D,={AeC||A|<C;}. g.(A") is an
analytic function of A’, and as €0, it converges to go(A') =det (A']; — Qf, (7. - ¢)|5,) =
det (\'E — Fy(w.)) uniformly on D,. We may assume that g.(A’) and go(A’) are not
zero on 8D, so that the proof is complete by use of the theorem of Hurwitz. 0
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Proof of Theorem 3.3. From Theorem 3.2, it is obvious that #(¢) is asymptotically
stable for sufficiently small £ >0. We show only that #(¢) has an attractive region
independent of small £ > 0.

Under the assumption of Theorem 3.3, it is proved by Lemma 5.1 of Ei and
Mimura [5] that there exist positive constants 8, 6 (0< 6 <w/2), €,, and C such that
for 0< e <e,, the sector S, ={A eC||arg (A —Be)|<m/2+ 6, A # B¢} is contained in
p(L.) and

(4.11) A=L) Y= forall Ae S,
I 1= 5
holds. By transforming ¢ into 7 (=¢t), (4.2) becomes
du 1
(4.12) = Autf(u)
dr ¢

and the linearized operator about ii(e) becomes 1/eL, (=1/eA+f,(ii(e))). Let S=
{reCl|larg (A —B)|<m/2+6, A#B}. Then by (4.11), we have |[(A—1/eL,)7"|=
C/|A —B| for all A €S, implying that ||e™/°||= C, e ®" for some C,> 0 independent
of ¢ satisfying 0< & = ¢,. Thus it turns out that #(e) of (4.12) has an attractive region
V independent of sufficiently small ¢ > 0. 0

Proof of Theorem 3.4.

LeMMA 4.1. For a given constant Cy> 0, there is €,>0 such that (4.2) has an
invariant manifold M, for |&|< e, which is represented as M, ={u,+ h(u,, €)|u, € Do},
with Dy={u, € B,||u)| < Co}. h satisfies h(-,-)e C'(Dyx (—&,, £0); B,), |h(uy, e)||=
C.¢, and ||h,(u,, €)|| = C, ¢ for some C,>0.

Proof. Problem (4.2) is rewritten as follows:

d d
(4.13) 71%1=3Qf(u1+u2), 71;2=A2u2+ ePf(u,+u,),
where u; = Qu and u, = Pu. Noting | e"*2|| = ||e** P|| = M e™*, we can prove this lemma
in a standard manner (cf. Carr [2]), so we omit the proof. a

By Lemma 4.1, we find that the dynamics of (4.13) on the invariant manifold ./,
is reduced to that of du,/dt = eQf(u,+h(u,, €)), or equivalently,

(414), B Oty + b, e,

where 7= ¢t. Since 7.(7) - ¢(-) is a nondegenerate periodic solution of (4.14), (¢ =0
in (4.14),) with period 7,, it is shown by Theorem 8.3.2 of Henry [18] that there exists
a periodic solution P(r; £) with period 7, for sufficiently small ¢ such that 7, » 7, and
dist {B(r; €)(+), 7, ¢(-)}>0 as £]0. Therefore the definition of P(t,-;¢)=
P(et; €)(-) completes the proof. 0

Remark 4.1. We note that (4.14), is reduced to (2.9), as £} 0. This implies that
(2.9), constructed by the two-timing method is the lowest approximation to (4.14), on
the invariant manifold ..

Proof of Theorem 3.5. We define P(t, -; £) by P(t; £€)(-)and consider the linearized
equation of (4.2) about P(t; ¢):
(4.15) %=(A+ ef (P(t; €)))u.
Let T.(t, s) be the evolutional operator of (4.15), that is, T,(¢, s)u, gives a solution of
(4.15) with u(s)=wu,. Then the period map U.(s) of P(t;¢) is given by U.(s)=
T.(s+t.,t.).
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LEMMA 4.2. There exist ¢,>0 and C,>0 such that |PU,(s)|| = C,e for 0<e<g,
and s =0.

Proof. Equation (4.15) is equivalent to
du

(4.16), — = EQL(P(5; &) (u + ),
du,
(4.16), —J——A2u2+ ePf,(P(t; €))(u;+u,),

where u; = Qu and u, = Pu. Let u(s)=u, with ||u,|o=1. Then, as is done in Lemma
6.6 of Ei [4], we can show that there exist ;>0 and C,>0 such that ||u,(s+1t)—
e"*2 Puy||o= C,¢ for 0< & < &,, so that we have

(4.17) lus(s+)|lo= Cre + Me | upl|o.
Since the inequality ¢, = C;/ ¢ holds for some C;>0, we see that
lus(s + t) o= [|PUscllo= Cre + M e ' °= Cye

for some C,> 0. The estimate above holds uniformly for u, (||uollo=1), which gives
the proof. 0

Suppose || PU,(s)|| = C,& for 0< & < £, and consider the equation (A — U,(s))u =1,
or equivalently
(4.18), Auy— QU (s)(u;+uy) =,
(4.18), Au,— PU, (s)(u, +u,) = v,,

where u, = Qu, u, = Pu and v, = Qu, v,= Pp. If A satisfies |A|> C,¢e for some C, with
C,> C,, then (4.18), is solvable on u, and we have

(4.19) u,= (A —PU, (s))"l(vz—PU (8)uy),

(4.20) (A =PU(s)) || = —m

for some C;>0. Substituting (4.19) into (4.18),, we see

(4.21) (A = QU.(s)Q+ QU,(s)(A = PU,(s5)) ' PU.(s))u; = ky,

where k, = v, — QU,(s)(A — PU,(s)) 'v,. Let II(7) be the periodic map of =, in
du
d—;= Qfu(my(7) - @)u, for u,e By,

which is the same equation as (3.1). Since |QU,(s)Q —m(es)|| >0 as €0, there exist
C; (i=4,5,6) such that o(QU,(s)Q)<={A e C|C,<|A| < Cs} and such that, for any A
satisfying |A|= C, or [A|= Cs, (A —QU,(s)Q) ™! exists with |[(A — QU,(s)Q)7"|| = Cs.
Hence there exists C;> 0 such that

78 C7
Al T
for A satisfying C,e <|A|=C, or |A|= Cs. Taking C, such that C,> C7, we see that
(4.21) is solvable on u, when &> 0 is sufficiently small, that is, {A € C| C,e <|A|= C,
or |A|= Cs} is in p(U,(s)), which gives the proof of the first half of this theorem.
Lemma 4.3. ||U,(s)—7(es)Q||~0 as £ 0.
Proof. From (4.17), we suppose that there exists a positive constant Cs such that

(4.22) lus(s+1)||o= Cs(e + %)

1A = QU.(s)Q) ' QU.(s)(A = PU(s5)) ' PU.(s) | =+~ I
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uniformly for u, with |u,lo=1. Let T.(t, s) be the evolutional operator of
(4.23) ?47= eQfu(P(t; €))u

and let U, (s) be the period map, thatis, U, (s) = T.(s + 1., 5). Then || T.(t, s)| is bounded
for t,=t=s5=0and U,(s)Q - m(es)Q as £|0. Equation (4.16), implies that
s+t¢

(4.24) u(s+t,)=U.(s)Quot+ e I T.(s+t., o) Qf.(P(0; €))u,(o) do.
From (4.22) we have '
”ul(s + ts) - Us(s)Qu0"0= "QUs(s)uO— Ue(s)QuOHO

s+t
=¢ J Co(e+e ™) do

s

= €C9(8t5+"1;>

= €C10

(4.25)

for some C, and C,,. Hence
| U.(s) =TI(es) Q|| = | QU.(s) - U.(s) Q||

(4.26) _
+[| U (s)Q —I(es) Q|+ || PU.(s)| >0

as £0. 0

We consider the spectrum contained in o,(¢). Noting that o(U.(s))=
o,(e)Uo,(g) such that o,(e)={AeC|C,<|A|<Cs} and o,(e)={A eC||A|= C,e},
we define a projection corresponding to o,(¢) by Q.(s), that is, Q.(s)=
1/2i IF (A= U.(s))"" dA, where I is a closed curve enclosing o, (&) with C,e <|y| < C,4
or |y|> Cs for any yeT. Let B.(s) = Q.(s)B and I,(s) be the identity in B.(s). Since
U.(s) has a compact resolvent, o,(£) consists only of isolated eigenvalues with finite
multiplicity. Hence B.(s) is a finite-dimensional space, and it suffices to inves-
tigate the zeros of g, (A)=det (AL (s)— Q.(s)U.(s)). From Lemma 4.3 and Q=
1/2mi [ (A —m(es)Q) ™" dA, we have | Q.(s)— Q|| >0 as £ 0, so that g, (1) converges
to go(A) =det (AL, — QII(0) Q) =det (AL, ~TI(0)) uniformly for A satisfying C,=|A|=
Cs. Since g, (1) and go(A) are analytic functions of A and gy(A) # 0 on T, the theorem
of Hurwitz completes the proof. 0

Proof of Theorem 3.6. If we transform ¢ into 7 (=¢t), (4.15) becomes

(4.27) Z: (1 A+efu(P(r; e)))

where P(r;¢)is a periodic solution with period 7. associated with m, - ¢ as shown in
the proof of Theorem 3.4. Let T.(r, s) and U.(s) be the evolutional operator and the
period map of (4.27), respectively. Then we remark that T,(et, es)= T.(t,s) and
ﬁs(es)= U.(s) hold, where T.(t,s) and U,(s) are the evolutional operator and the

period map of (4.15), respectively. From (4.22) and (4.25), we see that there exists
C;;:>0 such that

(4.28) I1T(, 5)| = Cy

for all 7= s=0. Then, in a way similar to the proof of Theorem 7.2.3 of Henry [18],
we can prove that there exist C;,> 0 and § >0 independent of sufficiently small £ >0
such that

(4.29) I T(T, sullo=C, e " s)lluﬂ



358 S.-I. EI AND M. MIMURA

forr=zsandue B!(s), where B.(s) is a subspace invariant under U(s), o(U(s)|5:) =
a(U(s))\{1}. The estimates (4.28) and (4.29) imply this proof. 0

5. Application to two-competing species models. In the previous section, we have
found that when ¢ is sufficiently small, the qualitative property of solutions of PDE
problem (2.1),, (2.2) is similar to those of ODE problem (2.9),, if they are nondegen-
erate.

In this section, as an application of our procedure, we consider the two-competing-
species model already proposed as (1.5),, (1.6) in § 1. For this model, we introduced
a parameter 6 in some interval ® indicating the distance between the maximum points
of K,(x) and K,(x). Here, to make clear the dependence on 6, we write the carrying
capacity K(x) as K(x; 6) and the stationary solution ¢(x) of (2.5) as ¢(x; 6). Then,
applying our procedure to (1.5),, we obtain the following approximating ODE with
the parameter 0:

dU.
E_l=("1 —a,(0) U, - by(0)U,) Uy,
(5.1)
au,
—d—= (r2—by(0) Uy — ax(6) U,) U,,
-
where

2
¢i(x; 6) J’ e1(x; 0)@s(x; 6)
i 0)= i —_d o bi 0)= i dx
a(0)=e JaKi(X;o) * (6)=8 Q Ki(x; 0)
for i =1, 2. The asymptotic states of solutions to (5.1) can be studied by phase-plane
analysis, namely, the global structure of equilibria of (5.1) is completely known with
respect to 6.
Let us show one example. We choose

(3 0 0 1 .6 3
=.cosdm|x+ )+ ——t-<x<o+>
5cosw-(xz)l (24x24),
Ki(x; 0)=*

— otherwise,
)

(5.2)
ré-cos4 (x—g>+1 (§+l< <Q+§>
5 \*72 274°7°27)
2 .
-5- otherwise.

By noting that x,=—(0/2)+ 3 and x,=60/2+3, we find that 8 varies in the interval
® =0, 3]. We specify d, r, a, B8, and y as

d=(dlad2)=(l, l)a r=(1’ l)a a=(la 1)’
B=(15,12), y=16,

(5.3)

respectively.

First we consider the case when the dispersal is ignored, so that (1.5), is formally
reduced to the ODE system with parameters x and 6:

i’ﬁ_ s(r _‘11“1"'31“2)
- ' K,(x; 6) "

du, (r Blul+a2u2) u
—=¢ —_—— .
P Ka(x;0) )

(5.4)
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A simple calculation shows that the parameters in (5.4) are chosen so as to have no
stable coexistence equilibrium for any x € ) and 6 € ®. In ecological terms, this situation
indicates the competitive exclusion between the two species as long as they do not
migrate. Under this situation, we have the following problem. If they migrate in a
heterogeneous habitat, is it possible for them to coexist? For this problem, the
approximating ODE system (5.1) works well.

First, consider the case when the advection is ignored, that is, y=0. We easily
find that the stationary solutions of (1.5), with € =0 and of (1.6) are ¢(x; 0)=(1,1),
which is independent of 6, so that the approximating ODE system is also independent
of 6. Phase-plane analysis shows the global picture of equilibria of (5.1) in Fig. 3. The
ecological interpretation is that if the two competing species move with diffusion only,
they never coexist even if the heterogeneous habitat encourages a favorably segregated
pattern for them.

Next, consider the case when the advection term is present, say y = 1.6. Figure 4
shows the global bifurcation pictures for 6, where there are two critical values 6,
(==0.15) and 6* (=0.27) such that three qualitatively different asymptotic states appear
for 0<6<0,, 6,<60<6% and 6, <6 <3. The stable coexistence equilibrium exists
for 6, < 0 < 3. Theorems 3.1-3.3 say that there is a stable stationary coexistence solution
of (1.5)., (1.6). That is, coexistence of the competing species occurs due to incorporation
of spatial heterogeneity and tactical migration (see [34]). Thus, from Fig. 4, the reader
can now completely understand why three different asymptotic states of solutions
appear for suitable 0 as in Fig. 2.

E0+
E++
E +0
Eao 6
0 1/2
F1G. 3. Global structure of equilibria of (4.4) when y=0. Ey,=(0,0), E,o=(r,/a;,0), Ep. =(0, r,/a,),
and E, , is the coexistence equilibrium. is the stable branch. - - - is the unstable branch.
EO+
S SR, E++
++ \\\
E+0
Eoo . ¥ 8
0 * 1/2

F1G. 4. Global structure of equilibria of (4.4) when y =1.6.
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There remains one interesting problem. Our theorems do not discuss bifurcation
points 8 = 0, and 6 = 6*. This analysis, with further applications to the multispecies
model, will be reported in [6].
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THE STEFAN PROBLEM WITH A KINETIC CONDITION
AT THE FREE BOUNDARY*

XIE WEIQINGT

Abstract. This paper considers a class of one-dimensional solidification problems, in which a kinetic
undercooling is incorporated into the temperature condition at the interface. A model problem with linear
kinetic law is considered. This study indicates that the presence of a kinetic term at the interface can prevent
finite-time blowup even though supercooling (superheating) exists. The mathematical effects of the kinetic
term are discussed.

Key words. kinetic undercooling, Stefan problem, supercooled
AMS(MOS) subject classifications. 35K05, 35R35, 80A20

1. Introduction. Mathematical models of solidification that include interface
kinetics effects have been considered for quite some time (see [1], [2], and references
therein). This class of free boundary problems, which arise in a number of physical
situations, is that of nonequilibrium problems, in which the phase-change temperature
is dependent on the velocity of the front at which the phase change occurs (for more
physical problems, see [3]-[6] and references therein). Here we study a model problem
with linear kinetic law at the interface in the one-dimensional case. Specifically, let
the curve x = s(¢) with s(0)=b (0< b <1) be defined as the interface that separates
the liquid and solid phases. With u denoting temperature (scaled so that it vanishes
at equilibrium), we may write the system of equations as

(1.1) u=kou, in Q={(x,1)/0<x<s(t),0<t=T},
(1.2) u, =ksu,, in Q={(x,1t)/ s(t)<x<1,0<t=T},
and on the interface x = s(¢) as

(1.3) u =ut=u',

(1.4) kiu; —ksut =—Ls(t),

(1.5) u' =es(1),

(1.6) s(0)=b, 0<b<l,

where k; and kg are thermal diffusivities of a liquid and a solid, respectively, L # 0 is
the latent heat, £ is a constant, and the superscripts + and — denote, respectively, the
right-hand and left-hand limits with respect to the spatial variable x. These equations
are subject to the initial and boundary conditions

1.7) u(x, 0) = ¢,(x), 0=x=b,
(1.8) u(x,0) = ¢,(x), b=x=1,
(1.9) u(i—1,)=fi(t), t=0 (i=1,2).

For the discussion below, we will also denote problem (1.1)-(1.9) as problem (P).

In the absence of the interface kinetics effects (i.e., when the coefficient £ =0),
this problem is known as the Stefan problem, which has been widely studied and for
which the mathematical results are fairly well understood.

* Received by the editors April 11, 1988; accepted for publication (in revised form) April 28, 1989. This
work was supported by U.S. Navy grant N00014-86-G-0021.
+ Mathematical Institute, 24/29 St. Giles, Oxford, OX1 3LB, United Kingdom.

362



THE STEFAN PROBLEM WITH A KINETIC CONDITION 363

The model in which the coefficient ¢ is nonzero has been considered by Coriell
and Parker in [3], where the shape stability has been carried out for the effects of
linear kinetic and of square kinetic law (i.e., 5 =u?®) when temperature u satisfies
Laplace’s equation, in place of the time-dependent diffusion equation (see also the
references in [3]). This has also been generalized by Coriell and Sekerka [4], who
discuss the morphological stability of a planar solid-liquid interface during unidirec-
tional solidification of a binary alloy. Crowley [5] has described several physical
situations in which two kinds of nonequilibrium problems occur; those that arise in
the modeling of alloy solidification in certain regimes, and those that arise in the study
of condensed-phase flame propagation in which the reaction zone is thin. Visintin [7]
has studied the latter problem using a variational approach, but has only been able
to establish the existence of a generalized solution.

Our objective in this paper is to understand the mathematical effects of the kinetic
term for the above model problem in the classical framework. The results here are
completely parallel to the results that have been proved for the standard Stefan problem,
but without sign restriction on the boundary and initial data that may lead to the
finite-time blowup for the Stefan problem in certain circumstances. This indicates that
the interface kinetics effect may regularize the problem, at least in the one-dimensional
case, in such a way that it can stop blowup, even if supercooling (superheating) exists.

In § 2 we give the existence proof via a fixed-point argument. Section 3 establishes
the uniqueness of the solution. Section 4 discusses the regularity of the free boundary
(also for temperature u(x,t)), and the C*-regularity is proved by repeating the
“bootstrap” process. Last, in § 5, we retrieve the solution of the Stefan problem by
taking the limit ¢ >0, with sign restriction on the boundary and initial data and an
additional assumption about the free boundary.

2. Existence of a solution of problem (P). In this section we establish the existence
of problem (P), (1.1)-(1.9). A definition of a classical solution (s(t); u(x, t)) is defined
in the usual sense, which satisfies

(i) seC' (0, T).
Denoting by Q= Q=(0,1)x (0, T) and by u; the restrictions to Q; of u(x, t),
(i) wu(x, 1)e C(Q)NC*(Q)),
u,€ C(Q\{x=i—-1}), i=1,2,
and (1.1)-(1.9), the functions ¢;(x) and f;(¢) (i=1,2) in (1.7)-(1.9) satisfy

(2.1) f(e C'RHNLTRY), ¢:1(x)e C[0,b], x(x)e C'[b,1]
and the consistency conditions
(2.2) £1(0)=1(0), £(0)=2(1), ¢:(b)=hx(b).

To prove the existence result, we use a fixed-point argument.

Let K(T,, M)={s(t)e C'[0, T,1/s(0)=b,0<s(t)<1,|s|=M}, where M is a
fixed constant to be specified below and T, is small enough so that
(2.3) MTy,=min {b, 1—-b}.

For simplicity, we ﬁrst_consider the case in which the constants £ and L are positive.
For any given s(t) € K(T,, M), there exists a unique solution u(x, t) of problem
(1.1)-(1.3), (1.6)-(1.9), and

2.4) kouz(s(e), t) —ksui(s(t), t) +f u(s(e),t)=0
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(see, e.g., [8], [9]). With this choice of u(x, t), we define the mapping F such that
Fs = h with

t
(2.5) h(t)= b+-l— J‘ u(s(r), v; s(1)) dr,

(4]
where u(x, t; s(t)) is a solution of problems (1.1)-(1.3), (1.6)-(1.9), and (2.4) corre-
sponding to the given interface x = s(¢).

If we can show that F has a fixed point that belongs in K(T,, M), then from
(2.5) and (2.4), it follows that (1.4) and (1.5) are satisfied. Thus (s(2), u(x, t)) will then
form a solution of problem (P).

To show that F maps K(T,, M) into itself, we observe that h(t) is again in
C'[0, T] and h(0) = b because u(x, t) is a classical solution of (1.1)-(1.3), (1.6)-(1.9),
and (2.4). Note that a straightforward application of maximum principle yields the
estimate

2.6) JuGx Dllor, = Mo=max (Ig:llo, I £l i=1,2).

If we take M = M,/¢, then by (2.5) we have h(t)e K(T,, M). This means the
mapping F is from K(T,, M) into itself.

We next show that F is a continuous mapping. To do this, suppose s"(t), s(t) e K
(n=1,2,--+), s" > s uniformly on [0, T,]. Define u"(x, t), u(x, t) to be the solution
of problem (1.1)-(1.3), (1.6)-(1.9), (2.4) corresponding to the boundary x=s"(t),
x = s(t), respectively. We first prove that u”(x, t) > u(x, t) in C(Q—To).

Since the u"(x, t) is bounded uniformly, which is also the generalized solution of
the problem

2.7) u,— (K(x, hu,+a(x, t)u),+a(x, t)u, =0 in Qr,
with boundary and initial conditions (1.7)-(1.9) in the sense of [10], where

0 in Q7 ={0<x=s5"(1),0<t< Ty},

kL’ —_
(2.8) K(x,t)={ “(x’t)“{_L/g in Qy={s"(t)<x<1,0<t<T,},

ks,
then u"(x, t) has uniform Holder constants on Qr, [10]. Thus there is a subsequence
(which we also denote by u"(x, t)) converging in C(Q,) to some function u(x, t).
Any region Q' bounded away from the interface x = s(t) and parabolic boundary I
of Qr, is also bounded away from x = 5" () for n sufficiently large. The uniform bounds
on higher derivatives of u"(x, t) in Q' allow us to pass to the limit to conclude that u
satisfies (1.1), (1.2).

To prove (2.4), we note that the u"(x, t) satisfy

J’J’ [ufé+ K(x, uzé +a(x, t)u"é+a(x, )uzéldxdt=0
Qr,

for all smooth £(x, t) vanishing in a neighbourhood of T'. Passing to the limit as n > o©
we have the same equality for u. As ¢(x, t) is arbitrary and (1.1), (1.2), integrating by
parts and noting that s(t) € K(T,, M) can show that (2.4) holds.

The uniqueness of the solution u(x, t) of the boundary value problem (1.1)-(1.3),
(1.6)-(1.9), (2.4) for given interface follows by standard methods (see, e.g., [8]). Then
the limit function u(x, t) of u"(x, t) is a solution of problem (1.1)-(1.3), (1.6)-(1.9),
(2.4) corresponding to the interface x =s(t); this implies that u"(x, t)> u(x, t) in

C(Qxr)-
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We now prove F(s")- F(s) in C[0, T], denoting by a(t) =min (s"(¢), s(¢)) and
by u(x, t; B(t)) the solution of (1.1)-(1.3), (1.6)-(1.9), (2.4) corresponding to the
interface x = B(t).

Then

F(s") = F(s) =% I [u"(s"(7), 75 s"(1)) = u"(a(r), 7; s"(1))] dr

(2.9) % I [u"(a(r), 75 s"(1)) ~ u(a(r), 75 s(1))] dr

+i_ L [u(a(r), 75 s(t)) —u(s(7), 7; s(¢))] dr

=IT+12+17.

From the Holder estimates of u"(x, t) and u(x, t) on GTO we get
w_Ma i
(2.10) |I,I§"'8_“S _s”C[O,To] (l=1, 3),

and the Dominated Convergence Theorem implies that
(2.11) |[I5]>0 as n>o0

because u"(x, t; s"(t)) > u(x, t; s(t)) in C(Qg,).

Hence, from (2.9)-(2.11), we get the continuity of the mapping F.

We have thus proved that the mapping F has a fixed point K(T,, M) by the
Schauder fixed-point theorem. The fixed point is also in K(7T,, M). This gives a solution
of problem (P) in 0<t=T,.

Noting that u(x, Ty) € C'[0, s(T,)]N C'[s(T,), 1] and (2.6), we can continue the
process step by step to construct a global solution of problem (P) in 0<t=T by
the same argument as that given above, where “‘global” means that either T =00 and
0<s(t)<1 for t<oo, or T<+0o and lim,,r s(¢)=0 or 1. Thus the existence is
proved for positive £ and L.

The method demonstrated above can clearly be extended to the case of negative
€ and L.

In the case of ¢eL <0, we note that the solution of (1.1)-(1.3), (1.6)-(1.9), (2.4)
for given interface s(t)e K(T,, M) is also a generalized solution of problem (2.7),
(1.7)-(1.9) in the sense of [10]. We then can obtain the L™-norm estimate of the
solution u(x, t), which may depend on | ¢;||.~, | fi|l.> (i=1,2), &, L, and T, but not
on the interface s(¢) [10]. Using the same method as stated above we can prove the
existence of a classical solution in 0<t=T,. We are careful to note also that the
L”-norm estimate for u(x, t) holds for any T> 0 for which (1.1)-(1.3), (1.6)-(1.9),
(2.4) has a solution (and not just for the small T, for which existence is assured, as
above). We then can extend the solution in 0<<t= T, step by step, to a global one;
“global” here refers to existence either for all times ¢t=0 or until the free boundary
hits one of the fixed sides x=0 or x = 1.

3. Uniqueness. We now prove the uniqueness of problem (1.1)-(1.9). Note that
problem (1.1)-(1.9) corresponds to the Stefan problem if & =0; the uniqueness of the
weak solution and hence of the classical solution has been proved by Oleinik [11].
Here we consider the uniqueness of solution of (1.1)-(1.9) when & # 0.

We first derive some estimates for the solution of (1.1)-(1.9) for discussion below.
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By a direct calculation of the integrals [y d/dt [ u® dxdt and [, d/dt [} ku? dx dt
and using the boundary and interface conditions, we have

1
sup J u’(x,t) dx+2 JJ ku? dx dt
o=t=T Jo QUQ;

=I ¢2(X)dx—%j (u')zdt—Zj (kL fi(0)ux(0, 1) = ks fo(£)ux(1, 1)) dt,

0

(3.1)

1
I kui(x, T) dx+2 J J k*u?, dx dt
Y QUQ;

T

(3.2) = Jl k(d(x))? dx+2 J (kpuyu; —ksutu?l) dt

0 0
T

= JT (ke (u3)” = ks(u3)?)s dt =2 J (ke (0, 0f1(1) = ksu (1, 1)/5(1)) dt.

0 0

Note that by (1.3)-(1.5) on x = s(¢), the second term on the right-hand side of (3.2)
is equal to

2L (T ,d r
- J u’z u' =2 J (kp(uy)?—kg(ul)?)s dt.
0 0
Then we get
I ku2(x, T) dx+2 jj k*u?, dx dt =J k(d(x))? dx—£ (u?(s(T), T)— ¢*(b))
QUQ; 0 €

0

(3:3) —J (k(uy)® = ks(uy)?)s dt

0

T
-2 ‘[ (ke u (0, )f1(t) — ksu, (1, t)f2(t)) dt
0
from (3.3), (3.4), and using the inequality below [12],
e (- T T2y = €l thexll 2ol thell L2any
we can derive
1
(3.4) sup J ku(x, t) dx+ JJ (kul+k*us) dxdt=C,
o=t=T Jo QUQ;

where constant C depends on &, L, T, ||é:lla, |fillator (i=1,2), and 8=
min {s(t),1-5(¢),0=t=T}.

To prove the uniqueness, let (s(t); u(x, t)) and (s(¢); u(x, t)) be two solutions in
some time interval 0 <t < T, such that for some positive constant § >0,

s=s(1), s()=1-6 as0<t=T,,

we can prove that s(¢) = s(¢), u(x, t)=u(x, t) in [0, T;].
Define the new space variable ¢ by

(3.5) &=a(x,s(1)),

where the function a(x, s) as defined in [0, 1]x[8§, 1 —§] satisfies [13]
(3.6) a(i,s)=i, (i=0,1), a(s,s)=3, a.ss)=1 asd=s=1-5,
3.7) a(x,s)Z ay>0, |DPa|l=c (|B|=3) in[0,1]1x[6,1-8],

where «, and c are positive constants.



THE STEFAN PROBLEM WITH A KINETIC CONDITION 367

Then (3.5) determines x as a function of ¢ and ¢, and the function v(¢, t), described
by

(3.8) v(§ t)=u(x, 1),
is defined on Qr=Q for any 0< T < T;.
Setting
(3.9) Q =(0,)x(0,T), Q"=G,1)x(0,T), Q=Q UQ"

and noting that u, = veo,, U, = vgg(ax)2+ Vgltyyx, and u, = v, + va,$(t), we find that the
function v(¢, t) satisfies the system

(3.10) v — kL(ax)vaf = (ke —a$(t)) in Q7,
(3.11) v, — ks(@x) vz = v (ks — @,$(1))  in QF,
(3.12) v &, =073, t)=es(1), t>0,

(3.13) kuop (b, ) —ksvi (3, 1) =—Ls(t),  t>0,
and the initial and boundary conditions

(3.14) p(£0)=¢(8), 0=¢=1,

(3.15) v(i—1,8)=£(t), i=1,2, t=0,

where ¢ (&) = ¢, if £€[0,3] and ¢ (&) = ¢, if £€[3, 1]; the superscripts + and — denote,
respectively, the right-hand and left-hand limits with respect to the variable &

Similarly, define w(¢, t) = u(x, t) with ¢ = a(x, s(¢)). Then w(¢, t) satisfies a system
similar to that satisfied by v(¢, t).

Now define
_Jke inQ7,
(3.16) k—{ks in O,
(3.17) z2(&t)=v(§ 1) —w(§1).
Then z(§ t) satisfies the following system:
(3.18) z,—k(a,)’ze=g in Q,
(3.19) 2 (3, 0)=2"G,t)=e(s=§), >0,
(3.20) kizg(3, 1) —kszg (3, ) =—L(s—§), t>0,
where
_ &1 in Q_,
(3.21) 8 {gz in Q",

(3.22) g4= (kL(ax)z— kL(Qx)z)ng"‘ (kpoex — as.s‘)z§ +[ (kLo — a8) — (kpgx — ng.)]wga
(3.23) g,= (ks(ax)® = ks(@x)*) Wee + (Kstux — 058) zg + [ (Kstax — a,8) — (Ks@ux — 2§) W

with g = a(x, 3).
From (3.18) we get

(3.24) J:[ 2(z, — k(ax)’zg) d§dt=JI gz déadt.
Q Q

Note that

(3.25) |&il = cllzel +1$—§|+|s — sl +Iweel s =51~ (1=1,2)
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and the lower bound of the left-hand side of (3.24) is

(3.26) %J 22(¢ T) d§+c“ (z¢)? dgdt—c” |2||z,| dé at,
0 Q Q

while the right-hand side term of (3.24) is bounded by

c” (12126l +15 = 81120+ s — 51121+ Iweells — 51| 21) de de
Q

(3.27) = C{J |s—s|>dt+n ‘”‘ ((ze)*+ (wge)|s — 5°) de dt
Q

+c(n) J’J z? dgdt}.
Q

The first term on the right-hand side of (3.27) is bounded by

T T
.l 2 1 <.£J . 2
CL 27 (2,t) dt=82 . |z(-, t)]| 1= dt

njj (z,)* d¢ dt+c(n) J'J 22 d¢dt.
Q Q

Noting also that ﬂQ |we|* d¢ dt = ¢ because of estimate (3.4), we have

T 1
njj |w§§|2|s—§|2d§dt=nj (J w§§d§>|s—§|2dt
-Q 0 0
T 1 t 1 2
J, (J; weeae)(], (G r) ar) e
1] 1] 0 2

en (T ¢
(3.29) = . (J Wie df) J (lze(-, D E20./2
0

0

(3.28)

iA

+ “Z( *y ’T)Iliz(o,l)) d’T dt

= J wégdfdt(Jj (z2+z§)d§dz).
€ J Q Q

From (3.26)-(3.29) and choosing 7 sufficiently small, we get

0 (] 0

1 " T 1
-;-J 2X(¢ T) dé+ ¢ J zzdédt=c J j 22(¢& t) dedt.
JQ

This implies that

1
J 2%(¢ ) dE=0
0

so that z=0 on Q and consequently v(¢, t) =w({, t), s(¢t) = s(¢). Thus the uniqueness
is proved.

4. Regularity of the solution. We now discuss the regularity of the solution for
problem (P). Recall that, for the ordinary Stefan problem, the free boundary is always
infinitely differentiable on the time interval in which existence is assured [14], [15].
Here the same result is proved for the problem with linear interface kinetics (1.5).
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To prove the regularity of the free boundary, we consider a neighbourhood of the
free boundary x =s(t) for 0<t< T, where [0, T] is the time interval in which the
solution of problem (P) exists with min {s(¢),1—5(¢),0=t=T}>0.

Choose 8 >0 so small that the region

N={(x,t)/ s(t)—-6<x<s(t)+86,0<t<T}
lies in Qr. Change the variable to
(4.1) E=x—s5(1)

and let v(§ t) =u(£+s(t), t) for (£ t) e Ny, where (s(t), u(x, t)) is the unique solution
of problem (P), N;={(&t)/—6<&é<6,0<t<T}.
Then v(¢, t) satisfies the following system:

4.2) V= kv =5(v, —6<E<0, 0<t<T,
4.3) U, — ksVge = $(t)v;, 0<E<S, 0<t<T,
(4.4) v(§0)=¢(§), —8=¢=3,

(4.5) v (0, t)=v*(0, t) = e5(¢), 0<t<T,
(4.6) kivg (0, 1) —ksv (0, 1) = —s5(t) 0<t<T.

We assume, without loss of generality, that k;, = ks and define the following two
functions:

(4.7) w(g ) =v(§ 1) —v(=k 1),
(4.8) w(& 1) =v(§ 1) +ko(=k 1),
where
(4.9) k=(ks/k)"/*=1.

Then w(¢, t) satisfies
(4.10) W, —kywee = S(1)(ve(§ t) —v,(—k& t)) in N7,
(4.11) w(0, t) =0, 0=t=T,
(4.12) w(§,0) = ¢:1(§) — ¢x(—kf), —6=¢=0,
and w(¢, t) satisfies
(4.13) W~ kwee = $(1)(ve(§, 1) + kvg(=k, 1)) in N7,
(4.14) k(e 0, 1) +(k++)£ w(0,1)=0, O0=(=T,
(4.15) w(§0)=¢:1(§) +kdy(—kf), —86=¢£=0,

where N7 ={(§ t)/—86 <¢<0, 0<t<T}. Note that the functions on the right-hand
side of (4.10), (4.13) belong to L™. According to the local parabolic L?-estimates for
the problem with the Dirichlet boundary condition and the problem with directional
derivative [10], we have

(4.16) w, wllw2iny =G,
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where p > 1 is arbitrarily constant, for any interior domain N,, the boundary of which
contains a segment £ =0. We choose p > 1 suitable large such that

(4.17) we, we € C'*(N,),

where 0 < a <1 [10].
Note that, from (4.7) and (4.8),

(418) o6 1) =g (w(& 0+ w(6 1),

(4.19) o(—k&, 1) = (w6 D)= w(& 1),

and hence v,(¢ t)e C***(N;)N C**/*(N7), where Nj is a domain of the form
(=8,0)x(m, T) and Nj is its reflection in the line £=0. By (4.6) we have §(t)e
C*’*(0, T), and so the functions on the right-hand sides of (4.10), (4.13) are now
C**/2(N73). Then, according to the parabolic Schauder estimates [10], [16] for (4.10),
(4.13), we have

w(§ 1), w(& t)e CPHCr2(NY),

where N is an interior domain of N3, the boundary of which contains a segment of
the £=0 axis; and so wg(¢, 1), w:(& t)e C'"*U/2(N7). Using (4.18), (4.19), and
(4.6), we find that the functions on the right-hand side of (4.10), (4.13) are
C1+a,(1+a)/2("ﬁ?)‘

This “bootstrap” process may now be continually repeated, each time to derive
better estimates on the derivatives of w, w and therefore of s(t), V(& t), v(—ké§, t), all
the way up to the £ =0 axis for any t> 0. Hence s(¢) is infinitely differentiable in the
time interval 0<t<T.

By standard parabolic regularity theory [12], [17], we can also obtain that u(x, t)
is infinitely differentiable in Q,U {x=s(¢), t >0} and Q,U {x=s(t), t>0}.

5. The limit process as € >0. We now discuss the limit process for ¢ when sign
restrictions are imposed on ¢, L, and boundary and initial data. This means we will
henceforth assume that

(5'1) fl(t)>0’ f2(t)<0’ ¢l(x)gos ¢2(x)§03

where ¢,(b) = ¢,(b) =0 and &, L are positive constants.

We will retrieve the solution of the standard Stefan problem by taking the limit
£ > 0" in the classical sense, and this only with an additional restriction about monoton-
icity (nondecreasing) of the free boundary.

We recall from previous sections that problem (1.1)-(1.9) possesses a unique
classical solution and note that the solution (s,(2); u.(x, t)) (¢ > 0) satisfies

(5.2) u.(s.(2), 1) = £5.(1),

1 1

u(x, t) dx— J” (kpu, (0, 7) — ksu, (1, 7)) dr

(]

d(x) dx—J

(]

(5.3) Ls.(t)=L,+ f

0

and estimates (2.6). To pass the limit £ >0 in the classical sense, we need to derive
some a priori estimates for the solution (s.(t); u.(x, t)), which is independent of &.

Using the method employed in [8], we can derive an estimate of (1/&)u.(s.(t), t)

that is independent of &. This is done by comparing the function v(x, t), which satisfies

(1.1)-(1.3), (1.7)-(1.9), and the interface condition v=0. Note carefully that
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v3(s. (1), t) <0 by the maximum principle and that the lower bound of vy (s.(t), t) can
be estimated by using the auxiliary function method that is independent of & [9]; this
is derived from the crucial assumption about nondecreasing of the free boundary.
Consider the function (1/¢)(u, —v) and suppose that p, is a positive maximum
point of that function. Then p, must belong to {(x, t)/ x=s.(1),0<t=T}, (u, —vy)
(po) >0, and (u}_— v¥)( po) <0 by the strong maximum principle. Furthermore, we have

max f (4. —v) =§ (u. —v)(po) =§ u.(po)
5.4
G4 = ke (w7, 07)(po) + ks(uE. = 02) (po) — ko7 (po) + kst (po)

=—kvx(po)=B (independent of ¢);
this implies that
(5.5) s.(1)|=C,

where C is a constant that is independent of . From (3.1) and (3.3) and using (5.5),
we have

1 1
sup I uZ(x, t) dx+j ku? (x, T) dx+2 JJ k*u?_dxadt
QUQ,;

0=t=T JO 0

= [ 16lran +UAlon* 1lran

T
(5.6) +J (Nt (5 Ol 2205, 0+ Nte, (5 D25 00.0)) dt]
0
=c[ 1oy Uilian +Ulionta [ | w, ava
QUQ;
T 1
+c(n) J j ul dx dt].
0 0
Then we derive
1
sup J (u2(x, t)+ul (x, 1)) dx+ JJ (u2 +u? ) dxdt
(5.7) o=t=T Jo QUQ;

=C(T o lton+ 1filkon(i=1,2)).

We can then get the solution of the Stefan problem via compactness arguments,
and possibly take subsequences. Indeed, in the light of estimates (5.5) and (5.7), there
exist a couple (s(t); u(x, t)) with s(t) e C*'[0, T] and u e C**/*(Q;) (0< a <1), such
that s,—~s uniformly in C[0, T] and u,~>u uniformly in C(Q;); moreover,
(s(2); u(x, t)) satisfying (1.1), (1.2), (1.7)-(1.9), and (5.2), (5.3) imply, respectively,

(5.8) u=0 on x=s(1),

(59) Ls(t)=b+ Jl é(x) dx— J't u(x,t) dx+Jn (kpuy(0, 7) — ksu, (1, 7)) dr.

0 0
Note that s(¢t)e C*'[0, T] and then u,e C(Q,) N C(Q,); then (5.8) implies the
Stefan condition (1.4).

Our demonstration above also indicates that we can retrieve the solution of the
one-phase Stefan problem by taking £ >0" without any additional restrictions (the
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monotonicity of the free boundary, in fact, holds automatically in this case). Note that
from (3.1), (3.3), we can get

s (1) T (s,(1)
(5.10) sup J ul (x,t) dx+J J’ (u2 +u2 )dxdt=C,

Exx
0=t=T JO 0 0

where the constant C depends only on the known data, but not on e.

By the interpolation inequality [12], |flIZ=(0e)= Cllfill2ao)lf sy, (5.10)
implies that

T
J "usx( ) t)"iw(o,ss(t)) dté C,
0

and then ||s.(?)|| 40, ) = C, where the constant C is independent of . With the above
estimates at hand, we can easily get the solution of the one-phase Stefan problem via
compactness arguments.

It is perhaps also worth noting that, in general, without the restriction (5.1), it
may not always be expected to pass the limit € >0 because the finite-time blowup
might, in fact, occur for the supercooled (superheated) Stefan problem in certain
circumstances (see, e.g., [18]-[20]).
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SEMIGROUP THEORY AND NUMERICAL APPROXIMATION
FOR EQUATIONS IN LINEAR VISCOELASTICITY*

R. H. FABIANOtAND K. ITO%

Abstract. The following abstract integro-differential equation

0
i)+ A [Eu(t) - / g9(s)u(t + ) dS] =)

-r
is considered on a Hilbert space. Such equations arise in the modeling of linear viscoelastic beams.
The equation is reformulated as an abstract Cauchy problem, and several approximation schemes
are discussed. Well-posedness and convergence results are given in the context of linear semigroup
theory. Results of numerical eigenvalue calculations for various approximation schemes are discussed.

Key words. integro—differential equation, linear semigroup theory
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1. Introduction. We consider the following integro-differential equation:

(1.1) i(t) + A [Eu(t) - / ’

g(8)u(t + ) ds] = f(t).

-r

Here A is a positive definite, self-adjoint unbounded operator on a Hilbert space H,
and f(t) is an H-valued function. Also, E is a positive constant (a stiffness coefficient
in applications to linear viscoelasticity) and g(s) is a “history kernel” which is further
characterized below. In §2, we formulate the equation as an abstract Cauchy problem
and prove well-posedness. This abstract framework is useful for the construction
and convergence analysis of approximation schemes for (1.1). It can be seen that an
approximation scheme for this type of equation involves discretization of the spatial
variable (finite elements, for example) together with an appropriate approximation
scheme for the resulting delay equation (we consider the so-called averaging scheme of
Banks and Burns [1] and a newer scheme recently developed by Ito and Kappel [10].)
In §3, we discuss this approach to approximation, and prove a convergence result using
the Trotter—-Kato semigroup approximation theo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>